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INTRODUCTION

Chapter 1 - Introduction

For many years, ecologists try to infer processes from patterns (Cale et al., 1989). In this context, the
term pattern is used to describe structure visible in data extracted from nature (Grimm et al., 2005;
Wiegand et al., 2003). Arguably, this is one of the main goals of ecology and probably science in general,
as we try to explain what we see in the data (Brown et al., 2011; Levin, 1992; Mclntire and Fajardo,
2009). Most ecological processes are spatially explicit and lead to identifiable spatial patterns in nature
(Liebhold and Gurevitch, 2002; Wiegand et al., 2013). Consequently, non-random spatial patterns are
more common than completely random ones (Perry et al., 2002; Szmyt, 2014). Because non-random
spatial patterns can act as a memory of past processes (Law et al., 2009), analysing these non-random

spatial patterns should allow to identify the underlying processes (Brown et al., 2016, 2011).

However, the pattern-process link might not always be straightforward (Mclntire and Fajardo, 2009).
Known issues include that different processes can lead to the same patterns (Barot et al., 1999; Wiegand
et al., 2003), various processes can interact (Dov¢iak et al., 2001; Wiegand et al., 2009) and lead to
random patterns (Cale et al., 1989; Molofsky et al., 2002) or processes can be the result of patterns and
not the other way around (Getzin et al., 2008). Nevertheless, a lot of these issues can be dealt with by
meaningful ecological hypotheses, precise descriptions of the data, as well as appropriate usage of null
models and simulation models (Mclintire and Fajardo, 2009; Wiegand et al., 2003; Wiegand and

Moloney, 2014).

Environmental heterogeneity can be defined as non-random or non-uniform spatial structure of
environmental conditions (Ettema and Wardle, 2002; Stein et al., 2014) and can further complicate the
pattern-process link. Environmental heterogeneity plays a role in many ecological processes. Examples
include species diversity (Stein et al., 2014; Tamme et al., 2010), seed dispersal and regeneration
processes (Jara-Guerrero et al., 2015; Ramon et al., 2018; Uriarte et al., 2017), demographic processes
(Getzin et al., 2008) and the general spatial structure of plant populations (Du et al., 2017; Guo et al.,
2016; Shen et al., 2013). Abiotic and biotic processes were shown to act simultaneously and to interact

in many plant populations (e.g. Adler et al., 2007; Chase and Myers, 2011; Chisholm and Pacala, 2010;
1
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Diniz-Filho et al., 2012; Furniss et al., 2017; Getzin et al., 2008; John et al., 2007; Legendre et al., 2009;
Mitchell et al., 2017; Schouten and Houseman, 2019; Shen et al., 2013; van Waveren, 2016). Because
both abiotic and biotic processes can result in similar spatial patterns of individuals, it can be
challenging, yet not impossible, to study the relative importance of biotic and abiotic processes and
disentangle possible interactions. This is further complicated by the scale dependence of ecological
processes and environmental heterogeneity. This includes that processes and heterogeneity might be
varying depending on the scale, but also that processes on one scale influence patterns on another scale
and vice versa (Wu, 2004; Wu and Li, 2006). The importance of scale received considerable attention
already decades ago (e.g. Levin, 1992; Wiens, 1989), but is still of scientific relevance until today

(Chave, 2013; Estes et al., 2018).

Spatial point pattern analysis (SPPA) is a powerful scale-dependent approach to analyse spatial
patterns and infer underlying processes (Law et al., 2009; Perry et al., 2002; Wiegand and Moloney,
2004). A point pattern includes the location of all individuals within a study region; normally simplified
as points in a two-dimensional plane (Perry et al., 2006). By analysing and modelling the point pattern,
possible underlying processes can be deduced (Brown et al., 2011; Law et al., 2009; Mclntire and
Fajardo, 2009). While the assumption of environmental homogeneity might be too simplistic for most
study systems, many former point pattern analysis studies assumed just such conditions (Velazquez et
al., 2016). However, SPPA provides tools to account for and explore the influence of environmental

heterogeneity on spatial patterns (e.g. Harms et al., 2001; Shen et al., 2013).

Individual-based simulation models (IBMs) are another promising approach to study the role of
environmental heterogeneity on emerging spatial patterns. IBMs are bottom-up simulation models in
which populations are represented by discrete individuals that allow to link patterns to processes across
scales (An et al., 2009). One fundamental feature of IBMs is that characteristics and behaviours differ
across individuals (Grimm and Railsback, 2005). This gives the opportunity to explicitly include
environmental heterogeneity and analyse its influence on the emerging patterns. However, despite

increasing attention, spatially explicit environmental heterogeneity is often not a major consideration in
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model design and analysis (Wallentin, 2017). This is even more striking since IBMs that include
environmental heterogeneity showed its importance for the emerging patterns (e.g. Cabral and Kreft,

2012; Jeltsch et al., 1998; Liu and Ashton, 1998; Tietjen et al., 2010).

Environmental heterogeneity, patterns emerging from it and its influence on ecological processes
have been discussed in the field of landscape ecology for many years (Turner, 1989). Landscape metrics
are acommon tool to quantify environmental heterogeneity for discrete land-cover maps (Kupfer, 2012;
Uuemaa et al., 2013, 2009; With, 2019). Even though landscape metrics are criticised of being too
simple to represent environmental heterogeneity and new approaches are suggested (e.g. surface
metrics; Cushman et al., 2010; McGarigal et al., 2009), they allow to link patterns to processes in a

straightforward way for many study systems (Lausch et al., 2015).

In this thesis, different methods are presented to study the role of environmental heterogeneity. All
methods have in common that they use the power of spatial patterns to describe and model the data.
Firstly, spatial point pattern analysis allowed to detect that abiotic processes had an influence on the
spatial patterning of plants (chapter 2). Based on this basic understanding that abiotic processes were
present, the next step was to link pattern to process. The pattern-process link could be modelled in more
detail by an IBM, as it allowed to incorporate various biotic and abiotic processes and to discriminate
between different hypotheses (chapter 3). Of course, to successfully study the role of abiotic processes,
suitable tools to describe and quantify environmental heterogeneity were required and introduced

(chapter 4).

Spatial point pattern analysis

Spatial point patterns include the discrete location of all so-called events within a usually two-
dimensional study area represented as points (Fig. 1-1; Velazquez et al., 2016; Wiegand and Moloney,
2014). In addition to the location, further marks such as the size or status can be attached to the events
(Grabarnik et al., 2011). One prominent example of spatial point patterns are the location of all tree
individuals within a study area. Often, additional marks such as the diameter at breast height (dbh), the
status (dead vs. alive) or the species (e.g. Du et al., 2017; Getzin et al., 2006; Lin et al., 2011; Wiegand

3
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et al., 2007; Yang et al., 2016) are attached to the events. Because point patterns contain information
about underlying processes (Law et al., 2009), analysing the patterns can allow to infer the processes
(Perry et al., 2002; Wiegand and Moloney, 2004). SPPA typically includes i) the specification of a
research question together with data gathering, ii) the selection of multiple appropriate summary
statistics, iii) the selection of appropriate null models based on ecological hypotheses and iv) the

comparison of data and null models (Wiegand and Moloney, 2014).

Depending on the research question and data type, point patterns can be classified into three
fundamental classes (Veldzquez et al., 2016; Wiegand and Moloney, 2014). Firstly, unmarked patterns
include only the location of all events and, optionally, a priori types. For example, this includes different
species because different processes are assumed to generate the patterns of the species (Goreaud and
Pellissier, 2003). Secondly, qualitatively marked patterns include a posteriori generated marks. Here,
the marks (e.g. dead vs. alive) are generated by the same process in the same set of events (Goreaud and
Pellissier, 2003). Thirdly, also quantitative marked patterns include a posteriori marks, such as the size

of the individuals.

Summary statistics are used to describe the spatial characteristics of a point pattern, and optionally
its marks, briefly but as concisely as possible (lllian et al., 2008). This can be done in an exploratory
context of the spatial structure as well as in a confirmatory context of hypotheses (Wiegand and
Moloney, 2014). In the past, spatially explicit indices, such as the Clark-Evans index (Clark and Evans,
1954), were used (Szmyt, 2014). While many of these indices are straightforward in their application
and interpretation (Illian et al., 2008), they aggregate the spatial characteristic of the whole pattern and
thereby of many scales to a single number and hence lose important information (Dale et al., 2002;
Szmyt, 2014). Today only the number or density of events per unit area, also called intensity A¢x,y), is
still commonly used (Veldzquez et al., 2016). In contrast to indices, modern approaches use summary
functions to describe the spatial characteristic of a pattern at several scales r (Fig. 1-1; lllian et al., 2008;
Wiegand and Moloney, 2014). These second-order summary functions take all distances between pairs

of events into account and are considered to be the most important tool of SPPA (lllian et al., 2008;
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Veldzquez et al., 2016). The pair-correlation function g(r) (equation 1-1; Stoyan and Stoyan, 1994) is
assumed to be the most informative summary function by many authors (lllian et al., 2008; Wiegand et
al., 2013; Wiegand and Moloney, 2014). It describes the event density at distance r from the typical
event of the pattern (Velazquez et al., 2016). The pair-correlation function g(r) is defined as the derivate
of Ripley’s K-function K(r) (equation 1-2; Ripley, 1976) and has the advantage of describing the pattern
at distance r and not cumulatively within distance r (as done in Ripley’s K-function; Wiegand and
Moloney, 2014). The pair-correlation function g(r) indicates complete spatial randomness (CSR) at
distance r for a value of g(r) = 1, clustered patterns for a value of g(r) > 1 and regular patterns for a

value of g(r) < 1 (Fig. 1-1).

K'(r)
2nr

g(r) = (1-1)

K@) = [_, g @nt)dt (1-2)

Mark-correlation functions (equation 1-3; Stoyan and Stoyan, 1994) can be used to analyse
guantitatively marked point patterns (Wélder and Walder, 2008; Wiegand and Moloney, 2014). The
mark-correlation function kmm(r) compares the means of two marks mi and m;j separated by distance r to
two randomly chosen marks (i.e. the overall mean). Hence, a positive correlation at distance r is present
if the mean of events separated by distance r is larger than the overall mean. Correspondingly, a negative
association is present if the mean of events separated by distance r is smaller than the overall mean

(Wiegand and Moloney, 2014).

Eij(mixmj)

Kinm (1) = oz (1-3)

In practice, the study area will always be restricted due to financial, temporal or logistical constraints.
Therefore, events located close to the edge of the study area might be influenced by neighbouring events
that were not sampled (Goreaud and Pélissier, 1999). This might happen for all distances r greater than
the distance from an event i to the study area edge (Haase, 1995). To account for this, several edge

correction methods exist, including buffer zone correction, toroidal edge correction or weighting edge
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correction (Haase, 1995). Thereby, using the distance from event i to the edge as a weighting factor is

the most practical approach for most situations (Haase, 1995; Yamada and Rogerson, 2003).

Point process models and null models are stochastic mechanisms that generate point patterns (Diggle,
2014). These models can be used to investigate if the data contains spatial structure, describe certain
aspects of the spatial structure or test hypotheses of assumed generating processes (Law et al., 2009;
Velazquez et al., 2016; Wiegand and Moloney, 2014). The selection of an appropriate null model is one
of the most important steps of SPPA and can be challenging (Goreaud and Pélissier, 1999; Law et al.,
2009; Wiegand and Moloney, 2004). Because it results in CSR, the homogenous Poisson process is the
simplest null model and often used to determine whether the point pattern contains spatial characterises
distinguishable from pure randomness (Wiegand and Moloney, 2014). This null model has two
characteristic properties, namely a constant intensity 1 throughout the study area and no interaction
between events (lllian et al., 2008; Wiegand and Moloney, 2004). Of course, also more sophisticated
null models exist, such as cluster processes (Thomas, 1949), inhibition processes (Matérn, 1986),
independence and random labelling (Goreaud and Pellissier, 2003) or antecedent conditions (Wiegand

and Moloney, 2004).

Because for many null models an analytical solution is not possible (Perry et al., 2006), Monte Carlo
simulations are used to simulate random realisations of the null model and construct simulation
envelopes (Fig. 1-1). For each random realisation, the same summary function as for the observed data
is calculated and e.g. for an approximated significance of o ~ 0.05 the 2.5t and 97.5t lowest and highest
values of n = 199 simulations at each scale r (simulation envelope) compared to the summary function
of the observed data. Scales r at which the observed value is not within the simulation envelope values
suggest a deviation from the null model (Baddeley et al., 2014). However, as pointed out by Loosmore
and Ford (2006) this approach has the problem of a Type I error inflation because it does not test only
one particular scale r but all scales simultaneously (Loosmore and Ford, 2006). However, because
hypothesis testing is not the major concern, for exploratory analysis simulation envelopes are still a

powerful tool (Wiegand and Moloney, 2014). If hypothesis testing is required, Goodness-of-Fit tests
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can be used to deal with the Type | error inflation (Baddeley et al., 2014; Loosmore and Ford, 2006;

Wiegand and Moloney, 2014).
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Figure 1-1: Example representation of three types of spatial point patterns with a) clustered, b) random and c)
regular spatial characteristics. The corresponding pair-correlation functions g(r) and simulation envelopes based

on 1999 simulations of the null model of complete spatial randomness (CSR) are shown.

Individual-based simulation models

Individual-based simulation models (IBMs) are a bottom-up approach, in which not the whole
population, but discrete individuals are simulated (DeAngelis and Grimm, 2014; Pommerening and
Grabarnik, 2019). Because the emerging characteristics of the whole population result from the

characteristics and behaviours of the individuals, the modelling approach is bottom-up (Grimm and

7
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Railsback, 2005). Uchmanski and Grimm (1996) suggested four main criteria to classify a simulation
model as individual-based. Firstly, IBMs must consider different size, age or life cycle stages of
individuals and a development of individuals (e.g. growth). Secondly, individuals need to explicitly use
resources depending on their own state. Thirdly, because individuals are discretely represented, the
overall population size must be quantified by an integer value. Fourthly, there needs to be variability
between individuals of the same size, age or life cycle stage (Grimm and Railsback, 2005; Uchmanski
and Grimm, 1996). Another feature of IBMs are local interactions between individuals in contrast to
often global interactions between all individuals of e.g. mathematical models (Grimm, 2008). This
feature is of great importance especially in plant populations, because interactions between immobile
plant individuals are local (Berger et al., 2008). Lastly, because of their individual-based characteristics,
explicitly considering space is often natural in IBMs (An et al., 2009; Wallentin, 2017). Even though
sometimes criticised of being too complex or not contributing to the understanding of the study system
(O’Sullivan et al., 2016, 2012), IBMs can be a powerful tool to study populations and carry out “virtual”
experiments. Consequently, IBMs can be helpful especially for study systems that are too complex or
with spatial and temporal scales too large to study experimentally (Grimm, 2008; Grimm and Railsback,
2012; Stillman et al., 2015). Additionally, IBMs are a suitable tool for research questions that include
variability between individuals, local interactions among individuals or individual adaptive behaviour

(DeAngelis and Grimm, 2014).

Even the simplest IBMs include at least two entities, namely the individuals and their environment.
Individuals can all belong to the same type or different types can be considered (e.g. different species).
Likewise, the environment can be homogeneous or heterogeneous (Grimm, 2008). Individuals are
described by so-called state variables, such as the location or size. These variables describe the
individuals at the lowest level of the model and cannot be aggregated from other variables (Grimm et
al., 2006). When aggregating the state variables, information about higher levels and finally about the
whole population can be gained, for example the overall population size. This is also referred to as
emergent behaviour (An et al., 2009). Of course, the selection of appropriate entities and state variables

depends on the specific research question (Grimm and Railsback, 2005).
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Once all entities and state variables are defined, the included processes described by submodels
modify them (Fig. 1-2; Grimm, 2008). Common examples include growth, dispersal or mortality of
individuals. Submodels normally describe ecological processes using mathematical functions and rules
based on the current state variables (Grimm, 2008; Grimm et al., 2006). Thereby, it is important to
consider the scheduling, i.e. how and in which ordering submodels are executed in the IBM because it
can heavily affect the model outcome (Grimm and Railsback, 2005). As an example, in a mortality
submodel in which the mortality probability depends on the resource acquisition of each time step,
naturally, the mortality probability will differ depending on if it is calculated before or after the resource
acquisition. Related to this, also the spatial and temporal extent and grain are important characteristics
of an IBM. While the extent refers to the total area of the environment and to the total time period, the
grain refers to the resolution of the environmental data and to the length of the time steps (Grimm, 2008).

Of course, appropriate choices highly depend on the research question (Grimm, 2008).

—b( Competition

‘ Growth ‘
F 3
Size ] Mortality
‘ Dispersal ‘
A 4
Pattern (living) Pattern (dead)
— Pattern (total) J
Positive Output

— Negative
—p No cleartrend (e.g. U-shaped)

Figure 1-2: Exemplary model concept of an individual-based simulation model including several ecological
processes (competition, growth, dispersal, mortality). The relationship between processes is indicated by the
colour of the arrow. As example, competition slows the growth, while growth increases the size. Because mortality
is described by a U-shaped probability depending on the size, there is a relationship between the two, but no

“clear” trend.
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Pattern-oriented modelling (POM; Grimm et al., 1996) is a strategy to make use of patterns in the
data to construct, optimise and parameterise IBMs as well as to contrast hypotheses (Grimm et al., 2005;
Wiegand et al., 2003). As mentioned in the section on point pattern analysis, patterns indicate underlying
processes that generated them (Janssen et al., 2009; Wiegand et al., 2003). The essence of POM is an
iterative processes of constantly comparing patterns of the IBM output and the field data during model
development, parameterisation and analysis (Wiegand et al., 2003). Because it might be relatively
simple to reproduce only one pattern at a time, it is recommend to use several patterns simultaneously
and to use patterns on individual- and population-level (Grimm et al., 2005; Janssen et al., 2009;
Wiegand et al., 2003). Using several patterns also allows to exclude unrealistic processes and
parameterisations of the model (Wiegand et al., 2003). While this strategy is not a new concept but
rather one of the main concepts of ecology and sciences in general (Grimm et al., 2005; Levin, 1992),
internalising POM during the modelling progress can improve the IBM and thus increase possible

insights into the research question (Grimm and Railsback, 2005).

Landscape metrics

Linking patterns of environmental heterogeneity to ecological processes is one of the central goals
of landscape ecology (Kupfer, 2012; Turner, 2005, 1989). There are several definitions of the term
landscape, but generally a landscape is defined as a spatially heterogeneous area (Turner, 1989). In order
to link spatial heterogeneity to ecological processes, one of the main challenges is how to describe and
quantify the heterogeneity (With, 2019). Thus, different approaches and methods were developed in the
past and new ideas are still being put forward (Frazier and Kedron, 2017; Gustafson, 2019; Lausch et

al., 2015; Nowosad and Stepinski, 2019).

One of the most used approaches describes landscapes as patches of discrete land-cover classes in a
raster context (Fig. 1-3; Forman, 1995; Forman and Godron, 1986; Wiens, 1995). Landscape metrics
are commonly used to quantify the composition (number and abundance) and configuration (spatial
arrangement) of the land-cover classes (Frazier and Kedron, 2017; Kupfer, 2012). Traditionally,

landscape metrics describe landscapes on patch level, class level and landscape level. A patch is defined
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as neighbouring cells belonging to the same land-cover class. Class level metrics describe all patches
belonging to the same class and lastly, landscape level metrics describe the whole landscape composed
of all patches (McGarigal, 2015). Regardless of the level, landscape metrics can be classified
additionally depending on the characteristic of the landscape they describe, such as area and edge
metrics, shape metrics, core area metrics, aggregation metrics or diversity metrics (McGarigal, 2015;
Simova and Gdulova, 2012). However, since landscape metrics do not have an informative value on

their own, results must be connected to ecological information and processes (e.g. biodiversity data).

| np=13/ ai=93.1 / pr=3 || np=22 / ai=88.0 / pr=3 [ np=32 / ai=81.2 / pr=3 I

Figure 1-3: Different landscapes represented by discrete patches of land-cover classes indicated by colours. The
landscapes are described by three exemplary landscape metrics (np = number of patches; ai = aggregation index;
pr = patch richness). All landscapes have the same diversity (pr), however, a different composition (np) and
configuration (ai).

While often criticised for being too simplifying, landscape metrics also have the advantage of
straightforward application, interpretation and communication (Lausch et al., 2015) and are still widely
used (Kupfer, 2012; Uuemaa et al., 2013, 2009; With, 2019). Recent examples of studies using
landscape metrics include biodiversity studies in agricultural landscapes (Decaéns et al., 2018), studies
of bird biodiversity (Herrera et al., 2018) or natural disturbance studies in temperate forests (Senf and

Seidl, 2018).

Study area

For the first two chapters of this thesis, field data from the Hainich National Park (Thuringia,

Germany) was used. The national park (51°06’ N, 10°31" E) is located in the Hainich-Din region which
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is close to the cities of Eisenach in the south-west, Bad Langensalza in the east and Muhlhausen in the
north east (Fig. 1-4). The region is characterised by two low mountain ranges with similar climate and
growing conditions (the Hainich and the Din) separated by the Unstrut valley (Mund, 2004) and is
hosting one of the largest continuous broadleaved forests in Germany (Butler-Manning, 2007;

Holzwarth et al., 2013).

The climate is suboceanic to subcontinental and long-term mean annual temperature and
precipitation are 7.5 - 8.0 °C and 750 - 800 mm, respectively (Holzwarth etal., 2013; Knohl et al., 2003;
van Waveren, 2016). The predominant parent material is limestone and soil conditions can be mainly
classified as brown soils or Cambisols to Luvisols covered by a loess layer (Holzwarth et al., 2013;
Mund, 2004). Elevation varied between 430 - 460 m a.s.l. with a gentle slope (Huss and Butler-

Manning, 2006; van Waveren, 2016).
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Figure 1-4: Location of the Hainich National Park (Modified after: © User:Lencer / Wikimedia Commons / CC-BY-SA-3.0).

The 28.5 ha forest dynamics plot is located in the former district “Weberstedter Holz” in the core
zone | of the Hainich National Park, which was founded in 1997 (Mund, 2004; van Waveren, 2016). In
the core zone I, no silviculture or other human management is realised (Butler-Manning, 2007). When

establishing the forest dynamics plot, awareness was raised to select a forest with an already high
12
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similarity to natural forest structures and dynamics (Huss and Butler-Manning, 2006). This was possible
because already previous to the founding of the national park, the area was used as a military training
ground by the national army of the former German Democratic Republic since 1965 (Butler-Manning,
2007). The forest mainly served as a buffer between the shooting ranges and the surrounding villages
and hence human access and management was restricted (van Waveren, 2016). Before that, the forest
was most likely managed as coppice-with-standards and was subsequently developed into a selection
forest during the 18w and 19w centuries (Huss and Butler-Manning, 2006; van Waveren, 2016). Because
the forest has not been managed for several decades now (Butler-Manning, 2007), it already developed
towards an old-growth uneven-aged forest representative for the region (Huss and Butler-Manning,

2006).

The forest association is Hordelymo-Fagetum and the forest is dominated by Fagus sylvatica L.
(European beech) making up to about 90% of all tree individuals (Butler-Manning, 2007; Huss and
Butler-Manning, 2006). This is not surprising since F. sylvatica is the most dominant tree species in
central Europe (Leuschner and Ellenberg, 2017). Other present tree species include Fraxinus
excelsior L. (European ash), Carpinus betulus L. (hornbeam) and Acer pseudoplatanus L. (sycamore) as
well as some less abundant species (Butler-Manning, 2007). The relatively high proportion of admixed
species, especially of the rather light demanding species such as F. excelsior and A. pseudoplatanus, is
most likely still a remnant of former management (Butler-Manning, 2007). Nevertheless, the forest can
be classified as an old-growth forest with largely natural characteristics (Butler-Manning, 2007; Huss

and Butler-Manning, 2006).

The coordinates of all individual trees with a diameter at breast height (dbh) larger than 1 cm were
mapped in 1999. All trees were tagged with an aluminium tag that allowed to re-measure all trees in
2007 (Holzwarth et al., 2013) and 2013. Additionally to the coordinates, also the species of each tree,
the dbh and the social class were recorded (Butler-Manning, 2007). The resulting point pattern data set

allowed to study the spatial patterning of individuals (van Waveren, 2016), tree productivity (Ratcliffe
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et al., 2015) or tree mortality (Holzwarth et al., 2013). In this thesis, the point pattern data set will be

used to study the importance and interactions of biotic and abiotic processes for the tree population.

Outlook of this thesis

The aim of this thesis was to demonstrate how patterns can be used to infer underlying ecological
processes. To this end, different methods that focus especially on spatial patterns were used. Advantages
of this focus on spatial patterns and the usage of various methods were demonstrated by analysing the
importance and interactions of biotic and abiotic processes on the spatial pattern of forest trees, which
is an ongoing discussion (e.g. Getzin et al., 2008; Jara-Guerrero et al., 2015; Lin et al., 2017; Shibata et
al., 2010; Yang et al., 2016). Many former similar studies were located in tropical forest and only few
studies exist for temperate forests (but see e.g. Gilbert and Lechowicz, 2004; van Waveren, 2016; Wang
et al., 2010a). Additionally, to the bias towards tropical forests, most former studies are based on only
one descriptive or inferential approach, not always allowing to fully conclude underlying processes.
This might be one reason why even for the same forest type, the assumed underlying processes and their
importance and interactions differ (e.g. Harms et al., 2001; Lan et al., 2012; Plotkin et al., 2000; Yamada
et al., 2006). Thus, in this thesis the importance and interactions of biotic and abiotic processes were

analysed using different, but related approaches to reveal a pattern-process link.

In chapter 2, point pattern analysis was used to study species-habitat associations in a temperate old-
growth forest dominated by F. sylvatica. This was motivated by the idea that species-habitat associations
identifiable in the spatial pattern of individuals are strong evidence for the importance of abiotic

processes.

In chapter 3, an individual-based simulation model was developed with two model versions, one
including only biotic processes, one combining both biotic and abiotic processes. The model was used
to further explore acting processes in a temperate old-growth forest using not only rather descriptive and
inferential point pattern analysis, but a dynamic simulation model that allowed to model the link between

patterns and processes in more detail.
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Lastly, in chapter 4, an open-source software tool was introduced to quantify environmental
heterogeneity on landscape level using landscape metrics. The software was designed to overcome
constraints and shortcomings of existing software tools and hopefully improves the integration of

heterogeneity measures into ecological research.
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Chapter 2 - Species-habitat associations of forest trees: A virtual ecologist
approach comparing common methods and application in a temperate
old-growth beech forest

This chapter is a manuscript to be submitted as a research article: Hesselbarth, M.H.K., Wiegand, K. In prep.
Species-habitat associations of forest trees: A virtual ecologist approach comparing common methods and

application in a temperate, old-growth beech forest.

Abstract

1. Species-specific habitat associations are one process leading to a clustered spatial pattern of trees,
a trend observable in tropical and temperate forests. Two contrasting methods are commonly used to
analyse species-habitat associations, namely the gamma-test and the torus-translation test. However, the
strengths and weaknesses of both methods were never analysed in detail. Additionally, regardless of the
method, there is little knowledge on species-habitat associations in temperate forests, albeit

environmental heterogeneity was shown to play an important role in these forests.

2. We conducted a simulation study to analyse the strengths and weaknesses of four methods that
seem suitable to study species-habitat associations: the gamma-test, the torus-translation test, the
randomised-habitats procedure and pattern reconstruction. The simulation study included the simulation
of neutral landscapes representing habitat patches and point patterns with known positive and negative
habitat associations with increasing association strength. In addition, we applied all methods to a real-
world data set of a temperate old-growth forest dominated by Fagus sylvatica. Applying multivariate
regression trees to soil variables, we identified discrete habitat patches and analysed species-habitat

associations of living and dead trees as well as of different life-history stages.

3. Overall, all methods were able to detect species-habitat associations similarly well. Only pattern
reconstruction slightly outperformed all other methods. However, pattern reconstruction was also
related to the highest computational demands. The soil variables of the real-world data were classified
to four discrete habitats. Two out of five species showed species-habitat associations to at least one

habitat, whereby, Fraxinus excelsior showed contrasting species-habitat associations to Fagus sylvatica.
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There was no clear trend for different size classes and dead trees did not show contrasting species-habitat

associations to living trees.

4. Although computationally intensive, pattern reconstruction has many advantages over all other
methods, such as the applicability to non-quadratic study plots and complex point patterns. The presence
of species-habitat associations in a temperate old-growth forest showed the importance of abiotic

processes shaping the spatial pattern.

1. Introduction

Worldwide, tree populations show a trend towards spatial clustering (Condit et al., 2000; Getzin et
al., 2006; Jia et al., 2016). This can be caused by either biotic or abiotic processes or a combination of
both acting simultaneously on the population (Cottenie, 2005; Legendre et al., 2009). An example for
biotic processes leading to clustered patterns of trees is spatially limited seed dispersal (Condit et al.,
2000). Contrastingly, also species-habitat associations, as an example of abiotic processes, can lead to
clustered patterns of trees (Shen et al., 2013). Species-habitat associations reflect the idea that species
are specialised to certain environmental conditions (Tilman and Pacala, 1993) and are clustered at
suitable habitats (Comita et al., 2007; Harms et al., 2001). Thus, studying small-scale species-habitat
associations can give insights into the importance of environmental heterogeneity for shaping the spatial

pattern of a tree population (Garzon-Lopez et al., 2014).

Analyses of species-habitat associations can be found mainly in tropical forests (Chuyong et al.,
2011; Comita et al., 2007; Gunatilleke et al., 2006), but also in sub-tropical forests (Lai et al., 2009;
Wang et al., 2009). In temperate forests, similar studies are rather rare (but see Furniss et al., 2017; Ye
etal., 2011). However, environmental heterogeneity was shown to be an important driver of the spatial
pattern of trees in temperate forests (Gilbert and Lechowicz, 2004; van Waveren, 2016; Zhang et al.,
2014). Thus, we analysed species-habitat associations in a temperate old-growth forest to investigate
possible influences of environmental heterogeneity on the spatial plant pattern (Garzon-Lopez et al.,

2014).
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Most studies analysing small-scale species-habitat associations use one of two contrasting methods,
either the gamma-test (Plotkin et al., 2000) or the torus-translation test (Harms et al., 2001). Both
methods have in common that they require data on the location of all individuals in the study area (a
point pattern, whereby individual points are referred to as events) and on small-scale environmental
conditions, such as topography or soil conditions, classified into discrete habitat patches (Fig. 2-1). To
test the null hypothesis that the point pattern is independent of the distribution of the habitat patches,
possible spatial dependencies between the two must be broken and this is how the two methods differ.
Whereas the gamma-test randomises the point pattern, the torus-translation test randomises the habitat

patches.

While the torus-translation test (e.g. Du et al., 2017; Furniss et al., 2017; Guo et al., 2016) is more
commonly used than the gamma-test (e.g. Garzon-Lopez et al., 2014; John et al., 2007; Yang et al.,
2016), this preference is not based on published knowledge on the strengths and weaknesses of the
methods. We found just a single study analysing the power of one method (Comita et al., 2007) and only
very few studies comparing several methods to each other (Furniss et al., 2017; Harms et al., 2001).
Comita et al. (2007) calculated expected false positive detections for the torus-translation test only to
determine an appropriate significance level. Furniss et al. (2017) and Harms et al. (2001) did not discuss
differences in detail, but only compared which method is more conservative (Harms et al., 2001), or
used more than one method to ensure that results are not sensitive to the used method (Furniss et al.,
2017). Following, a simulation study analysing the power of the methods is missing to this day. Besides
species characteristics and local environmental conditions, differences in the used methods may be
another reason why results differ between studies for similar forest types. For tropical forest, the
percentage of species with habitat associations varies strongly, e.g. 29.5% (Plotkin et al., 2000), 64%
(Harms etal., 2001), 70% (Lan et al., 2012) to 80% (YYamada et al., 2006). Adapting the virtual ecologist
approach (Zurell et al., 2010), we compared the ability of both the gamma-test and the torus-translation

test to detect species-habitat associations. Also, we propose to use pattern reconstruction (Tscheschel
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and Stoyan, 2006; Wiegand and Moloney, 2014) as a modification of the gamma-test (Plotkin et al.,

2000) for tree populations with complex spatial patterns.

To demonstrate the compared methods using field data, we analysed point pattern data from the
Hainich National Park (Thuringia, Germany). With the help of spatial point process models, van
Waveren (2016) showed that environmental heterogeneity is important for the spatial pattern of trees in
a 28.5 ha forest dynamics plot. To study the role of abiotic processes in this system further, we analysed
species-habitat associations of the most common tree species in the forest dynamics plot based on four
hypotheses. Because Fagus sylvatica L. (European beech) is the most dominant and competitive
vigorous species in the forest dynamics plot (Bolte et al., 2007; Butler-Manning, 2007; Huss and Butler-
Manning, 2006; Leuschner et al., 2006; Leuschner and Ellenberg, 2017), we hypothesise that (H1)
abiotic processes are the least important for F. sylvatica and the species shows less species-habitat
associations than all other species. Contrastingly, to avoid competition, (H2) all other species show
species-habitat associations opposite to F. sylvatica (Dobrowolska et al., 2011). Species-habitat
associations (Comita et al., 2007; Kanagaraj et al., 2011; Lai et al., 2009) and environmental measures
explaining the spatial pattern of trees differ for different life-history stages (van Waveren, 2016).
Therefore, we hypothesise that because seedlings and saplings in unsuitable habitats have a higher
mortality probability, (H3) species-habitat associations will become more prominent for later life-
history stages. This should be supported by (H4) contrasting species-habitat associations between living

and dead trees.

2. Methods

The two dominant methods to analyse species-habitat associations in the literature, namely the
gamma-test (Plotkin et al., 2000) and the torus-translation test (Harms et al., 2001) break possible
dependencies between the point pattern and the discrete habitat patches by randomising the data (Fig. 2-
1). However, because independence between events or between habitat patches is most likely not
fulfilled, the spatial structures of the point pattern and the habitat patches must be preserved (Plotkin et

al., 2000; Wiegand and Moloney, 2014). Dependence between events can be caused by e.g. limited seed
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dispersal and following spatial clustering of tree populations (Lutz et al., 2014; Nguyen et al., 2016) or
competition between trees resulting in regular spatial patterns (Kenkel, 1988; Pielou, 1962). Similarly,
according to Tobler’s fist law of geography (Tobler, 1970), spatial autocorrelation between the habitat
patches will most likely be present that leads to neighbouring patches being more similar than distant

ones.

| (b) gamma-test | | (c) Torus translation
(a) Observed |

| (d) Randomized habitats | | (e) Pattern reconstruction

Figure 2-1: Illustration of methods to analyse species-habitat associations. While the (b) gamma test and
(e) pattern reconstruction randomise the point pattern, (c)torus translation and (d) randomised-habitats
procedures randomise the habitat patches. Common to all methods is that either the point pattern (black points)

or habitat patches (coloured raster cells) of the (a) observed data is kept identical.

Species-habitat associations can be tested for by comparing, within each habitat type, the stem
density of the observed data with the stem density of randomised null model data (Harms et al., 2001,
Plotkin et al., 2000). Species-habitat associations are supported with an approximated significance of
p ~0.05 for a two-tailed test if the observed stem density is above the 97.5« percentile or below the
2.5t percentile of n times simulated null model data for positive or negative associations, respectively

(Harms et al., 2001).
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2.1 The gamma-test
The gamma-test (Plotkin et al., 2000) randomises the point pattern. Firstly, a suitable point process

model is fitted to the observed data (Fig. 2-2). Secondly, point patterns are simulated using the fitted
point process model. Lastly, the simulated point patterns are superimposed on the observed habitat
patches and the stem density within each habitat type compared between the observed data and the null
model data (Fig. 2-1b; Plotkin et al., 2000). The gamma-test, however, should only be applied if the
observed point pattern can be described by a suitable point process model (Wiegand et al., 2009, 2007).
2.2 Torus-translation test

The torus-translation test (Harms et al., 2001) randomises the habitat patches. This is done by shifting
the patches about a 2D-torus in all four cardinal directions. Whenever patches reach the border of the
study plot, they are replaced to the opposite side of the plot. Additionally, also rotating and mirroring
the shifted habitat patches is possible to simulate further null model data. Finally, the observed point
pattern is superimposed on the simulated habitat patches and the stem densities for each habitat type
compared between the observed data and the null model data (Fig. 2-1c; Harms et al., 2001). However,
this test is only possible for rectangular study plots (Harms et al., 2001) and if no strong gradients are

present in the environmental data.

2.3 Randomised-habitats procedure

Harms et al. (2001) also proposed a “randomised-habitats procedure” that randomises the habitat
patches and works for irregular study plots. At the beginning, all cells of the null model data are “empty”
and a random cell is assigned to the rarest habitat type. Random, but neighbouring cells are subsequently
assigned to the same habitat. This is repeated until the same number of cells as in the observed data are

assigned to the habitat. Afterwards, the assignment is redone with the second rarest habitat. To prevent

Y. Cellspatch

. <
. Cellsror <r0<r<

too large patches of cells for one habitat, we modified the procedure slightly: if

1 the procedure jumps to a random, non-neighbouring starting cell. The procedure stops when all cells

are assigned to a habitat. Lastly, the observed point pattern is superimposed on the simulated habitat
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patches and for each habitat the stem densities between the observed data and the null model data are
compared (Fig. 2-1d; Harms et al., 2001).
2.4 Pattern reconstruction

Pattern reconstruction (Tscheschel and Stoyan, 2006) randomises the point pattern using an
optimisation algorithm comparable to simulated annealing (Kirkpatrick et al., 1983). The method does
not depend on specific point process models (Fig. 2-2). Firstly, a random pattern y is created with the
same number of events as the observed pattern ¢. Secondly, both the reconstructed pattern y and the
observed pattern ¢ are described by summary functions fi(r, w) and fi(r,¢), respectively, to describe the
spatial characteristics of the point patterns at several scales r (Veladzquez et al., 2016). The spatial
characteristics of the point patterns can be described best if several summary functions are used
(Wiegand et al., 2013). However, since pattern reconstruction is computational demanding (Tscheschel
and Stoyan, 2006), we recommend using the most powerful combination of two summary functions
(Wiegand et al., 2013), namely the pair-correlation function g(r) (Stoyan and Stoyan, 1994) and the
nearest-neighbour-distribution function G(r) (Diggle, 2014; Illian et al., 2008). While the pair-
correlation function estimates the number of events at distance r for an arbitrary event of the pattern, the
nearest-neighbour-distribution function estimates the cumulative probability of finding the nearest
neighbour within a certain distance r for an arbitrate event of the pattern (Wiegand and Moloney, 2014).

Thirdly, the difference between the patterns is described by the energy E;’(’)ml(wt)=

2
£l \/Z’:":l [fl.“’ (r) — filpt(r)] . Fourthly, an event of the reconstructed pattern v is relocated to a new

ni

location and it is kept only if Eqotal(y£) decreases. If the energy does not decrease, the event is moved
back to its original location. To avoid optimising towards a local minimum, with a small probability the
new locations is kept even if Egotal( y4) increases. The procedure is reiterated until the stopping criterion
is met, i.e. a pre-set threshold of Egtotai(y4) or @ maximum number of iterations (Tscheschel and Stoyan,
2006). Lastly, the simulated point pattern is superimposed on the observed habitat patches and for each

habitat the stem densities are compared between the observed data and the null model data (Fig. 2-1e).
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r[m]

— gamma-test — Pattern reconstruction
Figure 2-2: Comparison between the randomised null model data using the gamma-test and pattern
reconstruction for an exemplary species of the simulation study. The pair correlation function g(r) of the observed
pattern (solid black line) is better described by the 2.5% and 97.5% quantiles of 199 simulated patterns using and

pattern reconstruction (red envelop) than point process fitting (gamma-test; blue envelope). For a complete spatial

random pattern (CSR), the pair correlation function would equal g(r) = 1 (dashed gray line).

2.5 Simulation study

In order to analyse all methods described, we conducted a simulation study inspired by the virtual
ecologist approach (Zurell et al., 2010). The virtual ecologist includes four major steps: i) using a virtual
ecological model to simulate data, ii) an virtual observation process (e.g. sampling), iii) drawing

inferences from the data and iv) evaluation against the simulated data (Zurell et al., 2010).

Firstly, we created landscapes using the two-dimensional fractional Brownian motion neutral
landscape model of the NLMR R package (Sciaini et al., 2018). The landscapes had an extent of
50%50 cells and a resolution of 20 m. The continuous values between 0 - 1 were classified into five
discrete habitats using natural breaks (Fisher, 1958; Jenks and Caspall, 1971). Secondly, we created
point patterns with known habitat associations (Table 2-1) and increasing association strength «. We
increased the association strength from 0.05 < o < 1 by 0.05 increment steps. The habitats to which the
patterns showed a positive or negative association were chosen randomly. To simulate the starting
patterns, we used a Poisson process (complete spatial randomness; CSR) and a Thomas (cluster) process

(Thomas, 1949) with 100 events for each pattern. In case of positive associations, we subsequently
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added additional events eventsadd = eventspatern * « t0 the habitat. In case of negative associations, we
subsequently thinned events from the habitat with a probability of pwin = 1 - « for each event to remain.

Accordingly, this resulted in a higher number of events for positive associations and in a lower number

of events for negative associations.

Table 2-1: Characteristics of simulated patterns including type of association and point process.

Patterns Association Point process
Pattern 1 Positive association Poisson process (CSR)
Pattern 2 Positive association Thomas (cluster) process
Pattern 3 Negative association Poisson process (CSR)
Pattern 4 Negative associations Thomas (cluster) process

For all methods, with exception of the torus translation test, we simulated 199 null model data sets.
The number of null model data sets for the torus translation test is determined automatically by the grain
and the extent of the study plot resulting in 2597 translated raster. The detection of the correct habitat
association (positive or negative) to the respective habitat was considered as the “correct” result. Since
a positive association to a habitat can lead to a negative association to another habitat (and vice versa;
Yamada et al., 2006), we defined a “false” detection as i) whenever the opposite associations was
detected for the habitat, ii) whenever no significance association was detected for the habitat, iii)
whenever the “correct” association was detected for a wrong habitat. All simulations were repeated
50 times for each association strength « using the same observed data, but new simulated null mode
data each time. However, with a probability of p = 25% each repetition, also the observed data was
simulated again. All results present the mean of correct and false detections for all repetitions (i.e. the
rate of correct and false detections).

2.6 Real-word data set
We analysed a real-word data set from the Hainich National Park (Thuringia, Germany). The national

park is located in the Hainich-Diin region, in which one of the largest continuous beech forests in
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Germany can be found (Butler-Manning, 2007; Huss and Butler-Manning, 2006). A 28.5 ha forest
dynamics plot (Lat: 51°4'44" Long: 10°26'31") was located within an old-growth F. sylvatica forest at
an altitude of 425 - 455 m. The area was used as buffer zone for a military training area since 1965 and
no major silviculture activities were carried out since then. In 1997, the study plot became part of the
national park (Butler-Manning, 2007; Mund, 2004). Therefore, the forest partly reached, and is further
developing, a natural old-growth character (Butler-Manning, 2007; Huss and Butler-Manning, 2006).
The mean annual temperature was 6.5 °C and the mean annual precipitation 720 mm (Butler-Manning,
2007). The soils were mainly calcareous rendzina or brown rendzina covered by a loess layer on shell
limestone (Mund, 2004; van Waveren, 2016). The point pattern of all trees (diameter at breast height
dbh > 1 cm) was mapped and identified to species level. For a detailed description of the plot and the
stand mapping see Butler-Manning (2007). The most common species was F. sylvatica with a relative
abundance of 90.0% (Appendix Fig. A2-1). Other occurring species included Fraxinus excelsior L.
(European ash; relative abundance 3.9%), Carpinus betulus L. (hornbeam, relative abundance 2.6%)
and Acer pseudoplatanus L. (sycamore; relative abundance 2.6%). All other species were summarised
as “others” (relative abundance 0.9%). Additionally to the point pattern, van Waveren (2016) sampled
environmental data using soil samples and vegetation relevés for Ellenberg's indicator values (Ellenberg
and Leuschner, 2010). The measurements were interpolated to the whole study plot using generalised
additive models (Saefken et al., 2014; van Waveren, 2016). For a detailed description of the

environmental data sampling and interpolation see van Waveren (2016).

To classify the cells into discrete habitat patches, we divided the plot into 846 20x20 m cells and
used multivariate regression trees (MRT; De’ath, 2002). MRT classifies cells into similar clusters using
the species assemblages as response variable and the environmental data as explanatory variables
(De’ath, 2002). We used the importance value (V) defined as IV = abundancerelaiive + basal arearelative
as response variable. As explanatory variables, we used seven environmental measures (Table 2-2) that
were identified as being important for the spatial pattern of the occurring tree species (van Waveren,

2016). At the edges of the study plot, we added one row and column, respectively, with the value that
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was the most common in all neighbouring cells. This was done to ensure that every tree can be assigned
to a habitat even though the study plot is not rectangular. The simulation study showed a similar
performance of all methods (section 3.1). Therefore, to achieve the most robust results for possible
species-habitat associations, we used all previously described methods, with exception of the torus

translation test (because of the irregular plot shape, Fig. 2-4).

Table 2-2: Environmental measures used to classify habitat patches.

Environmental measures

Soil water content (spring) Soil water content (summer)
Ellenberg’s indicator value soil acidity Ellenber’s indicator value soil nitrogen
Ellenberg’s indicator value light Plant available water
Soil depth

For the gamma-test, we used a Thomas process to simulated 4999 null model patterns for each input
pattern because all point patterns were clustered (Appendix Fig. A2-3). Also, for the randomised-
habitats procedure, 4999 null model habitat raster were simulated. To decrease the computational
demand for pattern reconstruction, we did not start with a completely random pattern, but firstly fitted
a cluster process to the data. Therefore, our approach is closely related to Plotkin (2000), but by
reconstructing the spatial structure a higher similarity between the null model and the observed data was
achieved. Due to the high computational demand, we only reconstructed 199 patterns for each input

pattern with a stopping criterion of either Egotal( y£) < 0.01 or iterationsmax = 20000.

Additionally, for hypothesis 3 we used the dbh in cm as a proxy for the life-history stage and
classified trees as “small” (dbh <2.5), “medium” (2.5 < dbh < 10) and “large” (dbh > 10) and analysed

species-habitat associations separately for life-history stages.

All analyses and simulations were performed using R v3.5 (R Core Team, 2019). All used methods
are implemented in the open-source R package shar (Hesselbarth and Sciaini, 2019) and analysis scripts
are available online at <https://zenodo.org/record/3541690>.
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3. Results

3. 1 Simulation study

Positive associations generated with CSR starting patterns were detected the best by all methods. In
case of 10% additional events within the habitat (i.e. « = 0.1), all methods detected positive associations
correctly in about 50% of all repetitions. Starting from 30% additional events within the habitat, all
methods detected positive associations correctly in all repetitions (Fig. 2-3a). For starting patterns
simulated using a cluster process and positive associations, the correct detections rate was slightly
worse. A correct detection of positive associations in 50% of all repetitions was present starting from
about 20 - 25% of additional events. Not until 50% of additional events, all methods detected positive
associations correctly in all repetitions. Pattern reconstruction slightly outperformed all other methods,

showing a higher correct detection rate, especially for lower positive association strengths o (Fig. 2-3b).

Compared to positive habitat associations, negative associations were detected less reliable. For
starting patterns simulated with CSR, all methods detected negative association in about 50% of all
repetitions only if 50% of events were removed from the habitat (i.e. « = 0.5). Negative associations
were not detected in all repetitions for any association strength « and only approximated if all event
were removed from the habitat (i.e. «=1; Fig.2-3c). Clustered starting patterns with negative
associations were detected in 50% of all repetitions for a relatively high associations strength of
approximated 0.75 < a < 0.8 (i.e. removing 75 - 80% of all events from the corresponding habitat). Even
if no events were present in the corresponding habitat (i.e. «=1), the detection rate of negative
associations did not reach 100% (Fig. 2-3d). Again, pattern reconstruction showed a slightly higher

correct detection rate for almost all association strengths oo compared to all other methods.

For false detections (i.e. opposite association, no significant association, or “correct” association t0
a wrong habitat) the overall trend was similar (Fig. 2-3). Firstly, starting patterns simulated using CSR
had lower false detection rates than starting patterns simulated using a cluster process. Secondly,
positive habitat associations had a lower false detection rate than negative associations. Following, the

lowest false detection rates were present for positive associations and CSR starting patterns (Fig. 2-3a),
27



SPECIES-HABITAT ASSOCIATIONS OF FOREST TREES: A VIRTUAL ECOLOGIST APPROACH COMPARING COMMON METHODS AND
APPLICATION IN A TEMPERATE OLD-GROWTH BEECH FOREST

whereas the highest false detection rates were present for negative associations and clustered starting
patterns (Fig. 2-3d). Generally, for negative habitat associations and lower associations strengths «,
pattern reconstruction had lower false detection rates than all other methods (Fig. 2-3c,d). Contrastingly,
for positive associations, the false detection rate was slightly higher for pattern reconstruction compared

to all other methods (Fig. 2-3a,b).

(a) CSR (positive association) | | (b) Cluster process (positive association)
1.00 4 A
N
\ /[ N A
0.75 ‘§ R / v
\ k!
\ ¥
0.50 1 \
-
0.25 1 / \ AP
o \ 7\
® & 7 N
= 0.00 4 e e s . S s e = = i el e ———————————
c
o
5 (c) CSR (negative association) | I (d) Cluster process (negative association) |
Q
< 1.001 oo -

T == S g\, gy Y
e A ,/ v \'& -‘\ e y/
0.75 4 \oS = R -

NI s
0.50 1 A
\, %5

i / My A L \

0.2 VN / Vv A
= S
- ’/‘ Y= = /\A \
0.00{ = —
01 02 03 04 05 06 07 08 09 10 02 03 04 05 06 0? 08 09 1.0
Association strength a
= (]) gamma test (II1) Patch randomization test — Correct

=== (|I) Torus-translation test (IV) Pattern reconstruction = = False

Figure 2-3: Correct and false detections for all methods and point process models. The association strength «
describes the fraction of events in relation to the overall number of events that were added or removed for positive
and negative associations, respectively. Starting patterns were simulated using either complete spatial
randomness (CSR) or a Thomas (cluster) process. The detection rate summarises 50 repetitions for each
association strength «. The solid line represents the mean of correct and false detections, the ribbon the standard

error of the mean.

3.5 Real word data
The forest was mainly dominated by F. sylvatica (Appendix Fig. A2-1) and the dbh distribution

approximated a reversed J-shaped form (Appendix Fig. A2-2). However, small diameters were
underrepresented. The point pattern of all trees showed a clustered pattern up to a distance of

approximated r = 40 m, but this was mainly dominated by F. sylvatica and all other species showed less
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clustering (Appendix Fig. A2-3). The MRT resulted in four discrete habitat types (Fig. 2-4; Table 2-3)

and only the soil water content (summer), the soil acidity and the soil depth had an influence on the

habitat classification.
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Figure 2-4: The 28.5 ha forest dynamics plot classified to 846 20x20 m habitat patches. At the edges of the study
plot one row and column was added, respectively.
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Table 2-3: Characteristics of the four classified habitats. The total area is slightly larger than the study plot
because of the added rows and columns to ensure each tree can be assigned to a habitat regardless of the non-

guadratic study plot area.

Habitat Number  Area Number Short description

of cells  [ha] of trees

1 522 20.88 9244 High water content (summer)
2 264 10.56 3523 Low water content (summer), high acidity
3 55 220 790 Low water content (summer), low acidity, shallow soil depth
4 5 0.20 43 Low water content (summer), low acidity, deep soil depth
> 846 33.84 13600 -

3.5.1 Hypotheses 1 & 2

Hypothesis 1 and hypothesis 2 analysed species habitat associations for all species separately and

only living trees were included in the analysis (Table 2-4).

Regardless of the used method, F. sylvatica, F. excelsior and A. pseudoplatanus showed significant
associations to at least one of the four habitats. Contrastingly, C. betulus and all “other” species did not
show any significance habitat associations to any habitat. For F. sylvatica and F. excelsior results
differed slightly between methods. However, a clear trend was present. In other words, at least two
methods always indicated the same result, while one method differed for some habitats and species

(Table 2-4).

For F. sylvatica, all methods indicated positive associations to habitat 1 and most likely negative
associations to habitat 4 (indicated by two methods). Lastly, two methods showed that there were no
associations to habitat 2 and habitat 3. For F. excelsior positive associations were present to habitat 4
(shown by two methods). Also, two methods indicated negative associations to habitat 1. Indicated by
all three methods, no significant associations were present to habitat 2 and most likely to habitat 3 as

shown by two methods (Table 2-4).
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Table 2-4: Results of the habitat association analysis using the gamma-test, randomised-habitats procedure, and
pattern reconstruction for all species. Negative associations (blue), positive associations (green) and not

significance results (grey) are indicated.

Fagus Fraxinus  Carpinus Acer  others
sylvatica excelsior betulus  pseudoplatanus

Habitat gamma-test positive negative n.s. n.s. n.s.
1 Randomised habitats positve n.s. n.s. n.s. n.s.
Pattern reconstruction positive negative n.s. n.s. n.s.

Habitat gamma-test n.s. n.s. n.s. n.s. n.s.
2 Randomised habitats negative n.s. n.s. n.s. n.s.
Pattern reconstruction n.s. n.s. n.s. n.s. n.s.

Habitat gamma-test n.s. positive n.s. positive n.s.
3 Randomized habitats n.s. n.s. n.s. n.s. n.s.
Pattern reconstruction negative n.s. n.s. positive n.s.

Habitat gamma-test negative positive n.s. n.s. n.s.
4 Randomised habitats n.s. positive n.s. n.s. n.s.
Pattern reconstruction negative n.s. n.s. n.s. n.s.

3.5.2 Hypothesis 3
For hypothesis 3, all living trees of F. sylvatica were classified into small, medium and large sized

trees, respectively, as a proxy for the life-history stage (Table 2-5). All other species did not include

enough individuals in the corresponding size classes.

All methods showed that small sized trees were positive associated to habitat 1 and negatively
associated to habitat 2. No associations to habitat 3 and habitat 4 were present. For medium sized tree,
all methods indicated positive associations to habitat 1 and negative associations to habitat 4 and lastly,
no significant associations to habitat 3. For habitat 2, two methods showed negative associations. Large
sized trees were not significantly associated to habitat 1 and habitat 2 as shown by all methods. Negative

associations were indicated by two methods to habitat 3 and habitat 4 (Table 2-5).
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Table 2-5: Results of the habitat association analysis using the randomised-habitats procedure, the gamma test
and pattern reconstruction for small, medium and large tree, respectively. Only F. sylvatica was included in the

analysis. Negative associations (blue), positive associations (green) and not significance results (grey) are

indicated.

small medium large

Habitat gamma-test positive positive n.s.
1 Randomised habitats positive positive n.s.
Pattern reconstruction positive positive n.s.

Habitat gamma-test negative negative n.s.
2 Randomised habitats negative negative n.s.
Pattern reconstruction negative n.s. n.s.

Habitat gamma-test n.s. n.s. negative
3 Randomised habitats n.s. n.s. n.s.
Pattern reconstruction n.s. n.s. negative

Habitat gamma-test n.s. negative negative
4 Randomised habitats n.s. negative n.s.
Pattern reconstruction n.s. negative negative

3.5.3 Hypothesis 4

Again, hypothesis 4 only included F. sylvatica, however, also dead trees were considered this time
in addition to all living trees (Table 2-6). Following, results for living trees were identical to hypothesis 1
(Table 2-4). For dead trees, all methods indicated a positive association to habitat 1 and no associations
to habitat 3 and habitat 4, as well as most likely no associations to habitat 2 as indicated by two methods

(Table 2-6).
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Table 2-6: Results of the habitat association analysis using the randomised-habitats procedure, the gamma test
and pattern reconstruction for living and dead trees, respectively. Only F. sylvatica was included in the analysis.

Negative associations (blue), positive associations (green) and not significance results (grey) are indicated.

living dead

Habitat gamma-test positive positive
1 Randomised habitats positive positive
Pattern reconstruction positive positive

Habitat gamma-test n.s. n.s.
2 Randomised habitats negative negative
Pattern reconstruction n.s. n.s.

Habitat gamma-test n.s. n.s.
3 Randomised habitats n.s. n.s.
Pattern reconstruction negative n.s.

Habitat gamma-test negative n.s.
4 Randomised habitats n.s. n.s.
Pattern reconstruction negative n.s.

4. Discussion

4.1 Simulation study
Overall, the methods performed similarly well for different patterns and associations, with exception

of pattern reconstruction slightly outperforming the other methods for most starting patterns and
association types. However, there are advantages and disadvantages related to all methods. The gamma-
test is conceptually straightforward, possible for non-quadratic study plots, but with the disadvantage
that complex patterns might not be sufficiently describable by a point process model (Wiegand et al.,
2009, 2007). The torus-translation test preserves the internal spatial structure of the original data quite
well (Wiegand and Moloney, 2014), however, it is only possible for rectangular study plots. Also, if
strong gradients are present, this will not be preserved by the torus-translations (Wiegand and Moloney,
2014). Contrastingly, the randomised-habitat procedure is also possible for non-quadratic study plots,

but the spatial structure of the data is preserved less well. Especially gradients in the data are not taken
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into account and null model data might be rather artificial. Lastly, pattern reconstruction is possible for
non-quadratic study plots and able to simulate complex point patterns, however, with the cost of high
computational demands (Tscheschel and Stoyan, 2006). Nevertheless, the method is able to preserve the
spatial structure of both the environmental data and the point pattern data the best compared to all other

methods and thus had the highest correct detection rates.

The performance of all methods was worse for negative habitat associations compared to positive
associations. This could have been due to the simulation study design. With increasing habitat
association strength, the probability of removing an event from the habitat increased. Following, the
overall number of events decreased. Thus, for stronger negative habitat associations the number of
remaining individuals might have been too small for a successful analysis (Wiegand and Moloney,

2014).

We could find only one study looking at least partly at the behaviour of one of the methods (Comita
etal., 2007). Using random labelling, the authors showed that for an approximated significance level of
p~0.05 only very few false-positive detections were present (between 1 - 4% for most of their five
habitats). Since Comita et al. (2007) did only include positive association, this is in accordance with our
results showing only a small rate of false detections for positive habitat associations, even though we

summarised a total of three different cases as a false detection.

Using data from a tropical forest dynamics plot (Barro Colorado Island, Panama), the randomised-
habitats procedure showed 38% less significant habitat associations than the torus translation test
(Harms et al., 2001). This is not in agreement with our simulation study. There were no differences
between the methods, both in terms of correct and false detections of habitat associations. One reason
might be that the randomised-habitat procedure does not necessarily preserve the spatial structure fully,
introducing a possible error source. It is possible that the spatial structure of the simulated neutral
landscapes could be better imitate by the procedure than the real-world landscape structure and

following no differences between the methods could be observed in our simulation study. Additionally,

34



SPECIES-HABITAT ASSOCIATIONS OF FOREST TREES: A VIRTUAL ECOLOGIST APPROACH COMPARING COMMON METHODS AND

APPLICATION IN A TEMPERATE OLD-GROWTH BEECH FOREST

our modification of the procedure allowing the procedure to jump to a non-neighbouring cell might

increase the realism of the simulated null model data, improving the procedure.

With increasing strength of a positive habitat association (i.e. more events within the habitat), the
point pattern becomes increasing clustered (Shen et al., 2013; Yamada et al., 2006). Interestingly, using
a Poisson process point model for the gamma-test did nonetheless result in a high correct detection rate.
This indicates that if habitat associations are strong enough, the used point process model and by that
the spatial structure of the point pattern is of secondary importance and results should be similar to a
generally less conservative y2-test (Harms et al., 2001; Plotkin et al., 2000). However, this might be only
true for quite strong habitat associations, i.e. many additional events within the habitat, and additionally

the y2-test does not control for clustering due to biotic processes (Plotkin et al., 2000).

4.2 Real-world data

Only three independent variables were included by the MRT, namely soil water content (summer),
soil acidity and soil depth. Similarly, Piedallu et al. (2016) were able to fit species distribution models
for temperate forest tree species using only a small subset of the originally provided input variables.
Since water availability is assumed to be among the most central factors for tree growth (Bréda et al.,
2006), especially the water content is not surprising. This is supported by species distribution models
(Piedallu et al., 2016) or boosted regression trees predicting a forest site productivity index (Aertsen et
al., 2012), both including variables on soil water availability for temperate forest species. Likewise, soil
pH and thereby acidity was important in both studies (Aertsen et al., 2012; Piedallu et al., 2016). One
general criticism of this study might be the sampling, interpolation and classification of environmental
data introducing possible error sources. Nevertheless, because the topography is rather homogenous in
the study area (van Waveren, 2016), however, soil conditions are still heterogeneous (Mund, 2004), we
decided not to include topographical data (which was available “continuously” for the forest dynamics
plot). This is supported by mainly environmental data improving studies analysing niche processes

(Chang et al., 2013).
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Even though past human influences can still be seen, the species composition, the spatial pattern of
trees and the dbh distribution was typical for an temperate old-growth forest (Butler-Manning, 2007).
F. sylvatica is expected to be the most dominant species in the region, outcompeting most other species
on non-extreme sites (Bolte et al., 2007; Leuschner et al., 2006; Leuschner and Ellenberg, 2017). The
reversed J-shaped form of the dbh distribution was, with exception of very small DHB classes,
comparable to virgin beech forests in south-eastern Europe (Westphal et al., 2006). Also, the clustered
pattern of trees is typical for temperate old-growth forest (e.g. Wang et al., 2010b) and especially smaller

beech trees tend to be highly clustered (Janik et al., 2016).

Hypothesis 1 stated that F. sylvatica shows the least habitat associations due to its generally assumed
broad adaptation to a variety of site conditions (Bolte et al., 2007; Lawesson and Oksanen, 2002;
Leuschner et al., 2006) combined with its competitive abilities (Leuschner et al., 2006; Leuschner and
Ellenberg, 2017). This was not supported by the data. On the contrary, the species had more significance
habitat associations than most other species. F. sylvatica was negatively associated to habitat 4. The
habitat had a low soil water content during the growing season as well as low soil acidity. Since
F. sylvatica is most dominant on sites not too dry and with a moderate soil acidity (Bolte et al., 2007;
Leuschner and Ellenberg, 2017), the unfavourable conditions for the species might have led to the
negative association. The positive association to habitat 1 might be explained by the higher soil water
content during the growing season making the habitat generally favourable for tree growth (Aertsen et
al., 2012; Bréda et al., 2006). Due to its competitive abilities (Leuschner et al., 2006; Leuschner and
Ellenberg, 2017), F. sylvatica might be able to outcompete all other species. Once the species is
established, this might be supported by the mainly barochorous seed dispersal (Martinez and Gonzélez-
Taboada, 2009), high shade tolerance of saplings (Janik et al., 2016; Petritan et al., 2007), and the lower

browsing damage compared to other species (Ratcliffe et al., 2015).

Hypothesis 2 stated that all other species have opposing habitat associations to F. sylvatica. This was
partly supported by the data. F.excelsior showed negative associations to habitat 1 and positive

associations to habitat 4. This was just opposing to F. sylvatica showing positive associations to
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habitat 1 and negative associations to habitat 4. The negative association of F. excelsior to habitat 1
might be due to the fact that the species was outcompeted by F. sylvatica growing in its optimum habitat.
Contrastingly, F. excelsior might benefit from the absence of the F. sylvatica in habitat 4. Even though
a niche overlap between the two species partly exists (Lawesson and Oksanen, 2002), F. excelsior still
tends to dominant on sites unfavourable for F. sylvatica (Dobrowolska et al., 2011). Also, Holzwarth et
al. (2011) showed an avoidance of F. sylvatica and F. excelsior co-occurrence. However, also remnants
of human influences are a possible explanation. Most F. excelsior trees are rather large (Appendix
Fig. A2-1) and probably still standards from a former coppice-with-standards management (Butler-
Manning, 2007; Holzwarth et al., 2013). In this case, the trees would have been selectively allowed to
growth into the upper forest layer, promoting their survival probabilities. Of course, this could have also

led to higher densities of trees within a certain habitat, besides natural processes.

Hypothesis 3 stated that because seedlings and saplings have a higher mortality probability in
unfavourable habitats, more species-habitat associations will be present for later life-history stages. This
hypothesis is in accordance with niche modelling of temperate forest species showing a niche shift with
increasing size and environmental variables being better predictors for large trees than for small ones
(Bertrand et al., 2011). Also, studies in the tropical and subtropical forests showed different habitat
associations between life-history stages of trees (Comita et al., 2007; Kanagaraj et al., 2011; Lai et al.,
2009). On other studies, the number of habitat associations was smaller for later life-history stages and
different stages were rarely associated to the same habitat (Comita et al., 2007; Lai et al., 2009).
Correspondingly, our results suggested habitat associations differed between life-history stages,
however, no clear increase or decrease of habitat associations with increasing tree size was observed.
The overall trend was similar to the habitat associations of all F. sylvatica trees. Therefore, it seems like
the positive habitat association of the overall population to habitat 1 is mainly driven by small and
medium trees. This could be due to favourable conditions for establishment and later higher mortality
due to increased competition (Comita et al., 2007). Also the higher shade-tolerance of F. sylvatica

compared to other species (Peltier et al., 1997) might allow a larger number of small trees to firstly
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establish in the habitat. However, also F. sylvatica needs to escape low-light conditions at some point
(Janik et al., 2016) and less trees grow into large size classes. Small and medium trees showed negative
associations to habitat 2, which was characterised by a low water content during the growing season and
high soil acidity. The unfavourable conditions for the species (Bolte et al., 2007; Leuschner and
Ellenberg, 2017), might prevent a successful establishment of regeneration. Another explanation might
be that the high soil acidity in habitat 2 is rather a consequence of than a reason for the presence of
F. sylvatica. Holzwarth et al. (2011) showed that the present of the species lead to lower pH values in
the top soil layer due to leaf-litter fall. However, this can be contradicted by the generally high
abundance of F. sylvatica in the whole study plot. Interestingly, medium and large trees showed negative
associations to habitat 3 and habitat 4, respectively. Again, both habitats were characterised by a low
water content during the growing season, low soil acidity and a shallow and deep soil depth,
respectively. While small trees might still be possible to successfully establish and grow in the habitat,
the generally higher nutrient demand of later life-history stages (Bertrand et al., 2011) might lead to a
higher mortality and consequently negative association of medium and large trees to the habitats. This
is supported by only negative species-habitat associations for medium and large trees in contrast to also

positive associations of small trees.

Hypothesis 4 stated that living and dead trees show opposing habitat associations because a higher
mortality probability in unfavourable habitats consequently leads to positive associations of dead trees
and negative associations of living trees (and vice versa). This was not supported by the data. For dead
trees basically the same habitat associations as for living trees or no significant associations were
present. The pattern of dead trees seemed to be largely dominated by the pattern of living trees. However,
this does not imply that mortality was necessarily completely random. In fact, dead trees were clustered
as shown by the mark-connection function and random labelling (Appendix Fig. A2-4), rejecting the
random mortality hypothesis (e.g. see Kenkel, 1988). The clustering of dead trees for the overall
population of F. sylvatica could not be related to our habitat classification and thereby environmental

influences. Rather biotic processes, such as growth and competition seemed to be the main drivers of
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mortality. Ratcliffe et al. (2015) showed that tree growth is mainly influenced by biotic factors and tree
growth indeed was an important driver of tree mortality (Holzwarth et al., 2013). Nevertheless, these
possible biotic processes might still have been influenced by abiotic processes in the form of

environmental conditions.

5. Conclusions

Our simulation study showed that all methods suggested by the literature to analysis of species-
habitat associations were able to detect positive and negative associations in a satisfactory and
comparable way. Thereby, negative associations for clustered patterns were detected worse than positive
associations for less clustered patterns. Additionally, we proposed to use pattern reconstruction,
especially if complex point patterns and/or non-quadratic study plots are analysed. To facilitate the
application, we implemented all methods in the open-source and freely available R package shar

(Hesselbarth and Sciaini, 2019).

Our analysis of a temperate old-growth forest showed that species-specific species-habitat
associations were present for the two most common species, namely F. sylvatica and F. excelsior. For
F. sylvatica habitat associations differed between life-history stages, however, no clear trend was
present. Lastly living and dead trees did not show opposing habitat associations, indicating the
importance of biotic processes for mortality. Even though our analysis suggested influence of abiotic
processes, i.e. environmental heterogeneity, biotic processes seemed to interact. Therefore, further

research into the interaction between these two processes is clearly needed.
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Chapter 3 - Environmental heterogeneity influences mostly earlier life-
history stages in a temperate old-growth forest as shown by individual-
based modelling

This chapter is a manuscript to be submitted as a research article: Hesselbarth, M.H.K., Enderle, L., Wiegand,
K., Moloney, K.A., In prep. Environmental heterogeneity influences mostly earlier life-history stages in a

temperate old-growth forest as shown by individual-based modelling.

Abstract

Environmental heterogeneity and related abiotic processes are assumed to support plant species
coexistence on global, landscape and local scales. Many of these abiotic processes lead to spatial
clustering of individuals at suitable sites. However, also biotic processes can lead to spatial clustering
of individuals. This complicates the analyses of the importance and interactions of these two groups of
contrasting processes. One promising approach to study the importance and interactions of abiotic and
biotic processes are individual-based simulation models. Individual-based simulation models are able
to incorporate interactions between individuals as well as interactions with a heterogeneous environment
and allow to gain insights into the underlying processes. To study the importance of environmental
heterogeneity in a temperate old-growth forest, we developed an individual-based simulation model
with two model versions. While the first model version included the most important biotic processes
only (competition, growth, seed dispersal, mortality), the second model version additionally included
abiotic interactions with the heterogeneous environment. To validate the model versions, we used non-
spatial and spatial patterns from field data in a temperate old-growth forest dominated by Fagus
sylvatica. Results showed that non-spatial patterns were adequately matched by both model versions.
However, spatial patterns were not matched by the purely biotic model version and results differed
between different life-history stages, i.e. saplings and adult trees. Inclusion of abiotic processes
modifying growth, seed establishment and mortality led to clustered spatial patterns similar to the field
data over an extensive period of time. The study highlighted the importance of abiotic processes in
temperate forests, especially for earlier life stages. Additionally, we demonstrated that considering

several spatially explicit patterns for model validation increased the ability to infer process from pattern.
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1. Introduction

Environmental heterogeneity is assumed to be one of the main drivers of plant species coexistence
(Chesson, 2000), whereby the relationship between environmental heterogeneity and species richness is
scale-dependent (Chase, 2014; Tamme et al., 2010). On landscape and global scales, species richness
increases with increasing environmental heterogeneity for many taxa and regions across the world
(Baldi, 2008; Stein et al., 2014). Increased environmental heterogeneity normally results in a higher
diversity of habitats (Baldi, 2008), as well as in shelters and refuges for species (Stein et al., 2014).
While some studies have found similar positive relationships between species richness and
environmental heterogeneity on smaller scales (Bergholz et al., 2017; Douda et al., 2012), other studies
have found no or even negative relationships (Gazol et al., 2013; Kadmon and Allouche, 2007; Laanisto
etal., 2013). Possible explanations for negative relationships include increased asymmetric competition
of dominant species (Gazol et al., 2013), increased stochastic extinction due to a decrease of suitable
habitat for certain species (Kadmon and Allouche, 2007) or an increase of smaller, isolated

microhabitats with increasing environmental heterogeneity (Tamme et al., 2010).

Many proposed processes that lead to positive relationships between environmental heterogeneity
and species richness depend on abiotic processes and relate to niche theory and linked coexistence
mechanisms (Tilman, 1982; Tilman and Pacala, 1993). On smaller scales, many of these abiotic
processes lead to spatially clustered patterns of species in suitable habitats (Comita et al., 2007; Harms
etal., 2001; Shen et al., 2013). However, biotic processes, mainly limited seed dispersal, also can result

in spatially clustered patterns of plants (Condit et al., 2000; Ramon et al., 2018).

Because both abiotic and biotic processes can lead to similar spatially clustered patterns, there is a
long-lasting and ongoing discussion about the relative importance of the two contrasting processes and
how to disentangle them in plant populations (e.g. Adler et al., 2007; Chase and Myers, 2011; Chisholm
and Pacala, 2010; Diniz-Filho et al., 2012; Furniss et al., 2017; John et al., 2007; Legendre et al., 2009;
Mitchell et al., 2017; Schouten and Houseman, 2019). While biotic processes including competition
(Coates et al., 2009; Wang et al., 2010a), limited seed dispersal (Martinez and Gonzélez-Taboada, 2009)
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or facilitation (Zhang et al., 2014), have been shown to be important in temperate forests, several studies
demonstrate that spatial patterns are also influenced by abiotic processes (Getzin et al., 2008; Shen et
al., 2013; van Waveren, 2016), indicated by e.g. species habitat associations (Furniss et al., 2017; Ye et

al., 2011).

There are several methods to analyse the influence of abiotic processes and possible interactions with
biotic processes, including analytical approaches (Chisholm and Pacala, 2010), spatial autocorrelation
analysis (Diniz-Filho et al., 2012), species-habitat associations analysis (Furniss et al., 2017; Harms et
al., 2001), principle coordinates of neighbour matrices (Legendre et al., 2009), linear regression models
(Mitchell et al., 2017), point pattern analysis (Ramon et al., 2018; Shen et al., 2013) or experimental
setups (Schouten and Houseman, 2019). Many methods have in common that conclusions about the
acting processes are based on descriptive and inferential analyses of observed field data. However, even
though not impossible, linking observed patterns to ecological processes is often neither straightforward
nor obvious (Law et al., 2009; Mclintire and Fajardo, 2009). Therefore, one promising approach is
provided by spatially explicit individual-based simulation models. These models allow variability and
interactions between individuals, as well as interactions with a heterogeneous environment and lastly
the explicit incorporation of hypothesised processes (DeAngelis and Grimm, 2014; Grimm and
Railsback, 2005). This makes them a powerful tool to study the importance and interactions of abiotic
and biotic processes. This is especially true for systems that are hard to study experimentally, such as
forests, due to the longevity and size of individuals, the temporal scale of processes and the overall

complexity of the system (Grimm and Railsback, 2012; Stillman et al., 2015).

Individual-based simulation models are commonly used in forest dynamics research for different
forest types and research questions. This includes, besides others, tropical as well as temperate forests
and applications dealing with practical management to theoretical issues (e.g. SORTIE; Deutschman et
al., 1997; FORMIND; Kohler and Huth, 1998; SILVA; Pretzsch et al., 2002; BEFORE; Rademacher et
al., 2004). Even though individual-based models are a powerful tool to study the role of abiotic

processes, only a few models exist that explicitly include environmental heterogeneity (but see Cabral
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and Kreft, 2012; Jeltsch et al., 1998; Liu and Ashton, 1998; Tietjen et al., 2010) and to our knowledge

none in temperate forests.

Pattern-orientated modelling uses patterns in the data to build simple, but realistic models, to
parameterise them and to contrast alternative hypotheses (Grimm et al., 2005; Wiegand et al., 2003).
This is done by continuously comparing patterns of the model output to patterns of the field data
(Wiegand et al., 2003). In this context, patterns are defining characteristics of a study system containing

information about acting processes and the system itself (Grimm et al., 2005).

Here, we are going to present an individual-based simulation model to analyse the importance and
interactions of abiotic and biotic processes in a temperate old-growth forest dominated by Fagus
sylvatica L. (European beech). Two model versions, one including only biotic processes and one
combining biotic and abiotic processes, will allow insights into the acting processes. Because we have
already shown that species-habitat associations are present for F. sylvatica (Hesselbarth et al., in prep.)
and abiotic processes influence the spatial pattern of trees (van Waveren, 2016) in a temperate forest
dynamics plot, we hypothesise that only the model version including biotic and abiotic processes will

be able to reproduce non-spatial and spatial patterns of the observed field data.

2. Methods

2.1 Field data from the Hainich National Park

We used field data from a forest dynamics plot situated in the Hainich National Park (Thuringia,
Germany) to parametrise and validate the model. The national park was founded in 1997, but already
starting from 1965 no major silvicultural activities were carried out in the study plot (Butler-Manning,
2007; Mund, 2004). The old-growth forest is dominated by F. sylvatica with a relative abundance of
90.0%, but also Fraxinus excelsior L., Carpinus betulus L. , Acer sp. L. and other species of low
abundance can be found (Butler-Manning, 2007; Huss and Butler-Manning, 2006). The climate is
temperate with a mean annual temperature of 6.5 °C and a mean annual precipitation of 720 mm (Butler-
Manning, 2007). Soils can be characterised as rendzinas or brown rendzinas covered by a loess layer on

shell limestone (Mund, 2004; van Waveren, 2016).
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In 1999, 2007 and 2013 the location, species and diameter at breast height (dbh) of all tree individuals
with a dbh > 1 cm were mapped (Butler-Manning, 2007; tree individuals are called events in the context
of point pattern analysis). The time period allowed the calculation of individual tree growth rates as well
as mortality (Holzwarth et al., 2013) leading to the parametrisation of most model processes, with the
exception of seed dispersal and establishment. The spatial location of all individuals allowed to use not
only non-spatial patterns, but also spatial patterns to construct and optimise the model (Grimm et al.,
2005) and finally to discriminate between the two model versions based on the highest agreement of

several patterns with the field data (Wiegand et al., 2008, 2003).

2.2 Comparison between model output and field data

Because more insights into the processes can be gained if multiple patterns at different spatial and
temporal scales as well as at different hierarchical levels are used (Grimm et al., 2005; Grimm and
Railsback, 2012; Wiegand et al., 2003), we included several non-spatial and spatial patterns on the

individual- and population-level.

The population size of all living saplings (1 <dbh <10 cm) and adults (dbh > 10 cm) was the
simplest pattern we used to compare the model output to the field data. On the individual level, we used

the dbh distribution and the mean annual dbh growth.

Spatial patterns included the distribution of a competition value (section 2.3.7) on the individual level
and the pair-correlation function g(r) (Stoyan and Stoyan, 1994) on the population level. The pair-
correlation function g(r) describes the event density at distance r from the average event of the pattern
and thereby allows to determine if a point pattern is random, clustered or regular at different distances r
(Veldzquez et al., 2016; Wiegand and Moloney, 2014). Because ecological processes also act at several
scales (Law et al., 2009), the scale-dependence is an important feature to infer processes from patterns
(Brown et al., 2011; Law et al., 2009; Mclntire and Fajardo, 2009). A random pattern at distance r is
indicated by a value of g(r) = 1, while clustering is indicated by a value of g(r) > 1 and regularity by a
value of g(r) < 1. Additionally, we used the mark-correlation function kmm(r) (Stoyan and Stoyan, 1994)

to analyse the spatial distribution of the dbh. This summary functions compares the conditional mean
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dbh of two events separated by distance r to the conditional mean dbh of two randomly selected events
and is thereby able to describe spatially positive and negative correlation of the dbh by values of
kmm(r) > 1 and kmm(r) <1, respectively (Wiegand and Moloney, 2014). We calculated all summary

functions using the spatstat R package (Baddeley et al., 2015).

2.3 The model
The following model description is in accordance with the ODD protocol (Grimm et al., 2010, 2006).

The model code is freely available at <https://zenodo.org/record/3573619>. All R scripts for the analysis

can be found at <https://zenodo.org/record/3582922>

2.3.1 Purpose

The purpose of the model was to investigate the importance and interactions of abiotic and biotic
processes in a temperate old-growth forest dominated by F. sylvatica. Following, two model versions
were developed, one including only biotic processes (competition, growth, seed dispersal, mortality)
and one combining both biotic as well as abiotic processes (interactions with a heterogeneous

environment).

2.3.2 State variables and scales

Individual trees were the only entities of the biotic model version. Trees were described by their stem
position (x- and y-coordinate), their dbh and their size group (seedling: dbh <1cm; sapling:
1 <dbh <10 cm; adult: dbh>10cm; dead). The combined model version additionally included
heterogeneous environmental conditions. The cell size of the raster describing the environmental
conditions was 1x1 m (spatial grain) and simulations were set in a 28.4 ha study plot (spatial extent)
comprising a grid of 651x615 cells (irregularly shaped, Appendix Fig. A3-1). Forest dynamics were
simulated every year (temporal grain) for 50 years total (temporal extent). However, in order to match
the available time period of the field data (section 2.1), results will be presented after 15 years. Because

of the stochasticity of the model, we used 50 repetitions of model runs.

46


https://zenodo.org/record/3573619
https://zenodo.org/record/3582922

ENVIRONMENTAL HETEROGENEITY INFLUENCES MOSTLY EARLIER LIFE-HISTORY STAGES IN A TEMPERATE OLD-GROWTH

FOREST AS SHOWN BY INDIVIDUAL-BASED MODELLING

2.3.3 Process overview and scheduling

All processes were modelled in discrete annual time steps. Firstly, competition was simulated for all
individual trees based on the local neighbourhood. Secondly, based on the tree size and the previously
simulated competition value, annual dbh growth was simulated. Thirdly, seed dispersal and
establishment were simulated. The number of seeds was based on the dbh of the source tree. Lastly,
mortality was simulated based on a probability depending on the dbh. For the combined model version,
all processes but competition were additionally dependent on the environmental conditions at the
growing locations of the individual trees.

2.3.4 Design concepts

Emergence: All non-spatial and spatial patterns emerged from the simulated processes of the
individual trees. Non-spatial patterns included the number of individuals, the dbh distribution and the
mean annual dbh growth. Additionally, we used point pattern analysis summary functions to describe

the spatial patterning of individuals.

Sensing: Trees had information about their location in both model versions and thereby also about
environmental conditions for the combined model version. Furthermore, trees had information about
their dbh as well as their size group. Lastly, the competition value and thus indirectly the local

neighbourhood was available for the trees.

Interaction: Trees interacted with each other using an exponential competition kernel describing
competition for resources. Thus, the perceived competition for each focal tree depended on the distance

to and the size of all other trees in its local neighbourhood.

Stochasticity: Seed dispersal and establishment as well as mortality included a stochastic component.
Produced seeds survived with a certain probability and the location of new seedlings was based on a
distance-dependent dispersal probability from the source tree (lower probability with increasing

distance). The mortality probability was based on the dbh, describing a U-shaped form.
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Collectives: Trees were classified as seedlings (dbh < 1 cm), saplings (1 < dbh <10 cm) and adults
(dbh > 10 cm) based on their dbh. However, all processes were simulated individually for each tree and
did not necessarily depend on the group. Trees that died during the simulation were not included in any

further processes, e.g. did not contribute to the perceived competition of living trees.

Observation: The individual-based characteristic of the model allowed all state variables to be
recorded on the level of individual trees and allowed the analysis and comparison against field
observations. The same was possible for the spatial patterning on the population level using several

point pattern analysis summary functions.

2.3.5 Initialisation

To ensure that model results were not influence by the initialisation, we used two different
configurations of trees to initialise the model: the field data recorded in 1999 and a reconstructed point
pattern based on the field data. We used pattern reconstruction (Tscheschel and Stoyan, 2006) to create
a random, but spatially comparable initialisation. Because not only the spatial patterning of individual
trees, but also the spatial distribution of the dbh is an important spatial characteristic (Pommerening and
Sérkka, 2013), we used a two-step reconstruction approach. In a first step, using the pair-correlation
function g(r) and the nearest-neighbour distribution function G(r) (Diggle, 2014; lllian et al., 2008) only
the spatial structure was reconstructed. In a second step, the spatial dbh distribution was reconstructed
using the mark-correlation function kmm(r). To reconstruct the spatial point pattern , we used the shar R
package (Hesselbarth and Sciaini, 2019). However, because results were similar between the two
initialisations, we are going to present only the results of the field data. Also, because the forest was
dominated by F. sylvatica and not enough data was available to parametrise and validate the model for
all other species present, we only used F. sylvatica for the analysis.

2.3.6 Input data

For the combined model version, data about environmental conditions describing the suitability for

tree growth was required. Because we assumed that a high intensity corresponds to suitable growing

conditions (Getzin et al., 2008), we used the intensity A(x,y), i.e. the event density at a certain location,
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of all adult trees of the initial tree configuration (field data census 1999; dbh > 10 cm). Values were
linearly scaled to -1 < Ascated(X,y) < 1, where Zscaled(X,y) = -1 described the least suitable growing condition
and Ascaled(X,y) = 1 described the most suitable growing condition in the study plot. We used the spatstat

R package to calculate the intensity.

2.3.7 Submodels

Competition: An exponential competition kernel was used to model the competition value for each
tree (Pommerening and Maleki, 2014). Advantages of competition kernels include their flexibility to
model asymmetric competition continuously in space among plants beyond the nearest-neighbour
scale (Pommerening and Maleki, 2014; Purves and Law, 2002; Schneider et al., 2006). Because of
their flexibility, the exact shape of the kernel (e.g. exponential or fractional) was shown to be less
important (Purves and Law, 2002; Schneider et al., 2006). Because we were only interested in the
effect of competition, i.e. a reduction of growth performance (Pommerening and Sanchez Meador,
2018), we assume that the kernel captures both above- and belowground competition. The competition
value of a focal tree ciraw aggregated the competition loads of all other trees j in its local
neighbourhood (equation 3-1, Fig. 3-1). The size of the competition load depended on the distances to
and the dbh of all trees j, whereby small trees that were far away had only a small contribution to the
overall competition load. The model parameters in equation 3-1 described the strength of
competition («) and scaled the decrease of competition with increasing distance (5) (Pommerening and

Maleki, 2014).

diStj
B
dbh]-

€] = ¥jz; dbh * exp (— ) (3-1)

Because how the competition load is perceived also depends on the dbh of the focal tree i, the
competition value of tree i was transformed using its own dbh and scaled to 0 < cirans < 1 (equation 3-2,
Fig. 3-1). The model parameter o in equation 3-2 was identical to the corresponding parameter in

equation 1-1 (Pommerening and Maleki, 2014).
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Figure 3-1: a) Competition kernel for tree individuals with a diameter at breast height (dbh) of dbhj = 10 cm
(dashed line) and dbhj = 20 cm (continuous line). b) Exemplary map of perceived competition values of the focal
trees i. The colour represents the perceived competition, where blue colours indicate a low and orange colours

indicate high competition values citrans. The size of the circles represents the dbh of the focal tree.

Growth: We adapted a potential-modifier approach (Botkin et al., 1972; Newnham, 1964) to model
annual dbh growth from Pommerening and Maleki (2014). Because of its flexibility, we used the
Chapman-Richards growth function (equation 3-3; Pienaar and Turnbull, 1973) to model the potential
annual dbh growth of a tree without any competition (Botkin et al., 1972). The model parameters A, k
and p of equation 3-3 described the asymptote, scaled the growth rate and described the turning point of

the function, respectively (Pommerening and Maleki, 2014).

AdbRPOE™IAL — Ay |« p x exp(—k * dbh;) * (1 — exp(—k * dbh;))P~! (3-3)

growth

The actual dbh growth of tree i was then reduced by its perceived competition (equation 3-4.1). For
the combined model version, the actual growth was additionally modified by the intensity Ascaled(X,y)

scaled by a parameter « (equation 3-4.2).

Adbhgstuth = dbREZI + (1 — cfrens) (3-4.1)
Adbhgesuth = dbhgyonty® * (1= cf7*) + dbhlouii™ * i * Ascatea (3-4.2)
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Seed dispersal and establishment: Seed dispersal was modelled in a two-step approach based on the
reduced model of Ribbens et al. (1994). In a first step (equation 3-5), the number of seeds produced was
determined by the dbh of the source tree. The parameter Str was the standard total recruitment for a tree

with a standardised mean dbh = 30 cm (Ribbens et al., 1994).

(3-5)

The number of seeds was then reduced by a survival probability that accounted for seed survival and
browsing (Olesen and Madsen, 2008). For the biotic model version, the seed survival probability was
constant throughout the study plot. For the combined model version, we used the standard errors of
Olesen and Madsen (2008) to increase and decrease the survival probability if tree seedlings were
situated at locations at which the environmental conditions were below or above the 25% and 75%

guantiles, respectively.

The locations of the seedlings were simulated using a distance-dependent probability with decreasing
probability with increasing distance from the source tree (equation 3-6). The normaliser n ensured that
the area under the curve equalled one, whereas the model parameters 7 influenced the probability
decrease with increasing distance (Ribbens et al., 1994). Because there were trade-offs between Str
and g as well as between 7 and 6 and the effects of the parameter pairs were similar, the parameters were

fixed to # = 2 and @ = 3 after an initial data analysis during the parametrisation by Ribbens et al. (1994).
. 1 .
dlStseedlings = zexp (—n = dlSte) (3-6)

Mortality: Because mortality is a binary dependent variable, the mortality probability depending on
the dbh was modelled using logistic regression (equations 3-7, 3-8). As explanatory variables, we used
the size of the tree and the annual dbh growth. Because mortality depends on the life history stage
(Franklin et al., 1987), equation 3-7 was fitted separately for small and large trees and the probabilities
added to produce a U-shaped function (equation 3-8; Holzwarth et al., 2013). Even though the mortality

depended only on the size, also an indirect effect of competition was included since the growth and thus
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the size depended on the competition. Similar to the seed dispersal and establishment process, for the
combined model version for trees that were located at the lowest and highest 25% values of the
environmental conditions, we used the standard errors of the parameter estimations (Holzwarth et al.,

2013) to decrease and increase the mortality parameters, respectively.

z =By + By * dbh + B, * Adbh (3-7)

1
1+exp (-2)

(3-8)

Pannual; =

2.4 Parameter estimation

Where possible, we estimated model parameters directly from the field data. This was possible for
all submodels with exception of seed dispersal and establishment, because no corresponding data were
available (Table 3-1). Model parameters for the mortality submodel were taken from Holzwarth et al.

(2013), who used the same field data to fit the logistic regression models for the mortality probability.

To estimate parameters of the potential annual dbh growth, we calculated the mean annual dbh
growth for each tree of the field data between 1999 - 2013. We classified trees according to their dbh in
the year 1999 into 4 cm-diameter classes and used only trees with the top 5% dbh growth of each class.
We assumed that the dbh growth of these trees was influenced the least by competition and thus we used
quantile regression to estimate the parameters for the potential annual dbh growth. Once parameters for
the potential annual dbh growth were estimated, a least square optimisation was used to estimate the
remaining parameters of the competition kernel that reduced the potential annual dbh growth to the

actual annual dbh growth (Fig. 3-2; Pommerening and Maleki, 2014).
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Figure 3-2: Field data used for the parameter estimation of the competition and growth submodel for the biotic
model version. a) The potential annual diameter at breast height (dbh) growth was estimated from trees with the
top 5% dbh growth in each 4 cm-dbh class (turquoise points). The black line represents the estimated potential
annual dbh growth. b) All trees with less growth than the top 5% dbh growth in each 4 cm dbh-class (violet points
in &) were used to estimate the parameters of the competition kernel which reduced the potential to the actual

annual dbh growth.
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Table 3-1: Model parameters of all submodels for Fagus sylvatica. For submodels indicated by *, parameters were estimated directly from the field data. For the combined model

version, parameters for trees growing in low and high environmental conditions are given. The last column indicates if the parameter was used for the Sobol’ sensitivity analysis.

Submaodel Equation  Symbol Description in Value biotic version / Reference  Sobol’ sensitivity analysis
software combined version

Competition* 3-1,3-2 o ci_alpha 1.057/1.272 (Pommerening and Maleki, 2014) yes
3-1 ci_beta 0.435/0.44 (Pommerening and Maleki, 2014) yes

Growth* 3-3 A growth_assymp 204911  (Pienaar and Turnbull, 1973; Pommerening and Maleki, 2014) no
3-3 k growth rate 0.006  (Pienaar and Turnbull, 1973; Pommerening and Maleki, 2014) no

3-3 p growth infl 1.35  (Pienaar and Turnbull, 1973; Pommerening and Maleki, 2014) yes

3-4.2 K growth abiotic -/-0.054 - no

Seed dispersal 3-5 Str seed_str 121.22 (Ribbens et al., 1994) no
and 3-6 n seed_beta 3.412 (Ribbens et al., 1994) no
establishment (3-5) y seed_success  0.005/low:0.004; high:0.01 (Olesen and Madsen, 2008) no
Mortality* 3-7 fo mort_int early 1.8/ low: 1.494; high: 2.157 (Holzwarth et al., 2013) yes
3-7 B1  mort_dbh early  -2.1/low:-2.253; high:-1.998 (Holzwarth et al., 2013) yes

3-7 o mort_int_ late  -8.9/low:-9.461; high:-8.339 (Holzwarth et al., 2013) yes

3-7 B1 mort_dbh late  0.052/low:0.042; high:0.061 (Holzwarth et al., 2013) no

3-7 B2 dinc -1.4 [ low:-1.91; high:-0.915 (Holzwarth et al., 2013) no
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2.5 Sensitivity analysis

Sensitivity analysis is a tool to assess how changes of input parameters relate to changes of the model
output (Saltelli et al., 2004) and can give insights into the importance of parameters (Railsback and
Grimm, 2012). Processes including sensitive parameters, i.e. parameters that have a relative large
influence on the general model output, can be assumed to be also important for the pattern formation
(Pommerening et al., 2011). To evaluate the influence of the parameters on the model output, we used
both non-spatial and spatial patterns. Firstly, we used the number of individuals as non-spatial model
output. Secondly, as spatial model output, we used the absolute area between the null model envelope
for complete spatial randomness and the observed pair-correlation function g(r) normalised by the total
area under the observed pair-correlation function g(r) (i.e. the “area of deviation”; Appendix Fig. A3-
2). Using this summarised measure of the pair-correlation function g(r)summarised had the disadvantage of
losing the functional characteristic of g(r), however, all sensitivity analysis methods required a single
numeric model output (Pianosi et al., 2016; Saltelli et al., 2004).

2.5.1 Local one-at-a-time sensitivity analysis

As a first step to get a general overview of the effect of each parameter (Railsback and Grimm, 2012),
we carried out a local one-at-a-time sensitivity analysis. This rather simple approach varies each
parameter at a time, while keeping all other parameters constant (Pianosi et al., 2016). The
straightforward application, however, comes with the price of not being able to give insights into
possible interactions between parameters and not necessarily representing the whole parameters space

(Thiele et al., 2014).

We both increased and decreased each parameter by 5% and 10%, respectively. Because of the
stochasticity of the model, we run the model 50 times for each parameter combination and calculated
the mean difference of the model output between the changed parameters and the baseline parameters.

For each repetition, the model was run 50 years.
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2.5.2 Global all-at-a-time sensitivity analysis

The local one-at-a-time sensitivity analysis allowed us to reduce the full parameter set to the most
sensitive ones, i.e. parameters for which the relative change of the model output exceeded the relative
parameter change. This reduced parameter set was used to analyse possible non-linear and non-
monotonic relationships between the parameters themselves and the model output (Thiele et al., 2014)
using the improved Sobol’ method (Sobol’ et al., 2007) implemented in the sensitivity R package (looss

etal., 2019).

The improved Sobol’ method allowed us to quantify and decompose main effects Si (the effect of
the parameter if all other parameters are constant) and total effects Sti (main and interaction effects) of
all parameters investigated (Thiele et al., 2014). If no interactions between parameters exist, the sum of
all main effects equals Si = 1. In this case, total effects Sti equal main effects Si. However, if interactions
are present, total effects Sti are larger than main effects Si and the sum can exceed Sti > 1 (Thiele et al.,
2014). If Sti< Si, parameters are most likely correlated (Wei et al., 2015). To efficiently sample the
parameter space, we used Latin hypercube sampling (McKay et al., 1979) and drew 250 samples from
the parameter space resulting in 2000 parameters combinations. The parameter space was defined using
the confidence intervals of the model fitting. As for the local one-at-a-time sensitivity analysis, the

model was run for 50 years.

3. Results

There were no noteworthy differences of the model output for the two different initialisations. Thus,
we are going to present the result of the initialisation with field data from the census in 1999 only. For
spatial model output, results differed between saplings and adults. Hence, results are presented

separately for saplings and adults.

To successfully fit the combined model version, two different values of the standard deviation of the
smoothing kernel o were required when constructing the environmental conditions using the
intensity A(x,y). For fitting the competition and growth parameters, a smaller value ¢ = 5 was used, while

for seed establishment and mortality a larger value o = 15 was used (Appendix Fig. A3-1).
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3.1. Sensitivity analysis

The local one-at-a time analysis showed that both the non-spatial and the spatial model output was
more sensitive to parameters changes for saplings than for adults (Appendix Fig. A3-3, Fig. A3-4). For
the number of individuals, two mortality parameters (mort_int_early, mort_dbh_early), two parameters
related to the competition value (ci_alpha, ci_beta) and one growth parameter (growth_infl) were the
most sensitive parameters. The relative differences of the model output between the changed parameters
and the baseline parameters exceeded the magnitude of the relative parameter changes for these
parameters (Appendix Fig. A3-3). The summarised pair-correlation function g(r)summarised Was mainly
sensitive to mortality (mort_int_early, mort_int_late, mort_dbh_early), competition (ci_alpha, ci_beta)
and growth (growth_infl). Also here, the relative differences of the model output between the changed
parameters and the baseline parameters exceeded the magnitude of the relative parameter changes

(Appendix Fig. A3-4).

The Sobol’ indices using the most sensitive parameters identified by the local one-at-a time analysis
showed that the model was mostly additive for the number of individuals (saplings: Y'Si = 0.94; adults:
>'Si = 0.84). Two mortality parameters (mort_dbh_early, mort_int_early) had the largest contribution
to the overall main effects with Si = 0.30 and Si = 0.48 for saplings and Si = 0.40 and Si = 0.36 for adults.
The large total effects showed that only small interaction effects between the parameters existed. This
was supported by the total effects Sti, which where only marginally larger than the main effects Si for
all parameters. For saplings, interaction between parameters were slightly more prominent than for

adults (saplings: > Sti = 1.09; adults: > Sti = 1.03) (Fig. 3-3, upper panels).

For the summarised pair-correlation function g(r)summarised, the main effects of all parameters were
fairly small for saplings and adults with sums of >'Si < 0.1 for both life-history stages. Total effects St
(saplings: >.Sti = 1.1; adults: > Sti = 1.68) exceeded the main effects Si for all parameters. Thus, for the
summarised pair-correlation function g(r)summarised a5 model output interaction between parameters were

more important compared to the number of individuals (Fig. 3-3, lower panels).
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Figure 3-3: Sobol’ indices sensitivity analysis for the number of individuals and the summarised the pair-

correlation function g(r)summarised @ model output for saplings and adults separately. A subset of important

parameters indicated by a local one-at-a-time sensitivity analysis were used. To sample the parameters space,

Latin hypercube sampling was used. The circles show the sensitivity index value, error bars 95% confidence
intervals of 10000 bootstrap repetitions. Colours indicate main effect Si (blue) and total effects Sti (orange).

3.2 Model output

3.2.1 Non-spatial patterns

For the field data from 1999 - 2013, the number of individuals was relatively stable for adults and

decreased for saplings by about 1000 individuals (Table 3-2). A similar trend was observed for the biotic

model version. While the number of adult trees was more or less stable during the first 15 simulation

years, the number of saplings decreased by about 1000 individuals. Interestingly, after 50 simulation
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years this trend changed and the number of saplings increased, whereas the number of individuals
decreased compared to the initialisation. Contrastingly, for the combined model version, both the
number of saplings and well as the number of adults decreased in all simulation years. This decrease
was even more prominent for saplings compared to adults (Table 3-2).

Table 3-2: Number of Fagus sylvatica individuals for the field data and the biotic and combined model version
separated by size group. Trees with a 1 < dbh <10 are classified as saplings, trees with a dbh > 10 cm as adults.
The number of individuals for the model runs described the mean of 50 simulation runs as well as the standard

deviation (parenthesis). Because field data was not available in 5-year steps, results were compared to the next

nearest year steps of the simulation model.

Year Field data Biotic model version Combined model version
Field Model Sapling Adult Sapling Adult Sapling Adult
data data

0 0 7049 6204 7049 6204 7049 6204
8 10 5790 6094 6036.36 (45.2) 6077.06 (18.2) 5565.54 (45.0) 6004.64 (16.4)
14 15 6080 6207 6091.96 (58.7) 6005.96 (22.1) 5230.56 (48.6) 5897.20 (21.2)
- 50 - - 7953.42(72.3) 5318.42(25.8) 4137.40 (61.3) 5113.46 (27.3)

For the biotic model, there was a good fit of the relative dbh distribution between the model results
and the field data. Only the relative frequency of trees with a dbh 10 < dbh < 20 cm was slightly less for
the biotic model version compared to the field data (Fig. 3-4). However, similar to the number of
individuals, after 50 simulation years the relative frequency of trees with a dbh < 10 cm was higher for
the biotic model version compared to the field data. While about 50% of all trees had a dbh < 10 cm in
both censuses of the field data, about 60% were in the corresponding dbh class for the biotic model
version. At the same time, for all other dbh classes the relative frequency for the biotic model version

was smaller than for the field data (Appendix Fig. A3-5).

For the combined model version, the relative frequency of trees with a dbh < 10 cm was slightly less
compared to the field. For all larger dbh classes the relative frequency for the combined model version

showed a satisfactory fit between the model data and the field data (Fig. 3-4). Again, after 50 simulation
59



ENVIRONMENTAL HETEROGENEITY INFLUENCES MOSTLY EARLIER LIFE-HISTORY STAGES IN A TEMPERATE OLD-GROWTH

FOREST AS SHOWN BY INDIVIDUAL-BASED MODELLING

years discrepancies between the model data and the field data increased and the relative frequencies of
trees with a dbh < 10 cmand a 10 <dbh < 20 cm were smaller, while for all other dbh classes the relative
frequency was slightly larger for the combined model version compared to the field data (Appendix

Fig. A3-5).
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Figure 3-4: Distribution of diameter at breast height (dbh) classes for the biotic and the combined model version
after 15 simulated years and for field data of the censuses in 2007 and 2013. The dbh was classified using 10 cm

classes. The last class included all trees with a dbh > 100 cm.

The mean annual dbh growth did not differ between the biotic and the combined model version
(Fig. 3-5). For both model versions the dbh growth of trees with a dbh <10 cm at the start of the
simulation was smaller compared to the field data. For the remaining dbh classes, there was a
satisfactory agreement between the model data and the field data, even though the simulated dbh growth
was always slightly less compared to the field data. While the field data showed a decrease of mean
annual dbh growth for larger trees (dbh > 100 cm), no such decrease was observed for the model data.
Consequently, the growth of large trees was larger for by both model versions compared to the field

data (Fig. 3-5). However, this was based on only few individuals.
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Figure 3-5: Annual diameter at breast height (dbh) growth for 15 simulated years of the biotic and the combined
model version as well as for the field data based on the censuses in 1999 and 2013. The boxes include the middle
50% of the data and the whiskers include 10 - 90% of the data. The median is represented by the solid line.
Trees were classified to dbh classes (class width 10 cm) based on their dbh in 1999. The last class included all

trees with a dbh > 100 cm.
3.2.1 Spatial patterns

For the field data, competition values did not show clear differences between the censuses in 2007
and 2013, however, clear differences were apparent between different size groups with high competition
values dominating the density of adult trees (Fig. 3-6). Both model versions resulted in distributions of
competition values for adult trees comparable to each other. While the biotic model version fitted the
field data well, the density peak of the combined model version was shifted towards higher competition
values compared to the field data (Fig. 3-6). For saplings, both model versions resulted in less higher
competition values (cirans ~ 0.65) compared to the field data (Fig. 3-6). After 50 simulation years, higher
competition values for adults, but especially saplings were less present for both model versions

compared to the field data (Appendix Fig. A3-6).
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Figure 3-6: Distribution of competition values for the biotic and combined model version after 15 simulated years

(surfaces) and field data census in 2007 (solid line) and 2013 (dashed line). Colours indicate size groups; saplings
(blue) are classified by a 1 < dbh <10 cm and adults (red) by a dbh > 10 cm.

The pair-correlation function g(r) showed a clustered pattern at small distances r for saplings in both
censuses, respectively. This clustering was stronger in 2013 compared to 2007 due to a few high-density
clusters. Contrastingly, adults showed a segregated pattern at small distances r in the 2007 and 2013
censuses (Fig. 3-7). After 15 simulation years, the biotic model version indicated a segregated pattern
of adults and a clustered pattern of saplings at small distances r. For larger distances, the patterns of
both size groups tended towards complete spatial randomness (Fig. 3-7, left panel). Thereby, the
clustering of saplings for the biotic model version was weaker than for the field data. This trend carried
on with increasing simulation years and after 50 years the spatial characteristics of saplings resembled
the spatial characteristics of adults, i.e. all clustering at small distances r disappeared (Appendix
Fig. A3-7). Similar to the biotic model version, the combined model version indicated a segregated
pattern for adult trees at short distances r as well. However, at medium and larger distances r the pattern
showed weak aggregation regardless of the distance r. On the other hand, saplings were clustered at

small distances r and tended towards complete spatial randomness with increasing distance r, similar to
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the field data. Nevertheless, the strength of the clustering was slightly weaker for the combined model
version compared to the field data (Fig. 3-7, right panel). Contrastingly to the biotic model, the clustering
of saplings was still present for the abiotic model version after 50 simulations years. At the same time,

the weak clustering of adults at medium and larger distances r increased (Appendix Fig. A3-7).

Biotic model version | Combined model version |

0 10 20 30 40 50 0 10 20 30 40 50
r[m]

B sapiing Adult — Field data 2007 -- Field data 2013

Figure 3-7: Pair correlation function g(r) for the biotic model version and the combined model version (envelopes)
after 15 simulation years and the field data censuses in 2007 (solid line) and 2013 (dashed line). Individuals are
classified to size groups (sapling: 1 < dbh <10 cm, adult: dbh > 10cm) indicated by colour (saplings: blue;

adults: red).

For the field data, the negative correlation of the mark-correlation function kmm(r) at small distances r
indicated that adult trees growing close to each other tended to be smaller. With increasing distance, this
trend developed towards no correlation (randomness) at larger distances r. Interestingly, for saplings,
there was a distinctive difference between the censuses in 2007 and 2013. Whereas the faintly negative
correlation was independent of distance r in 2007, a negative correlation at short distances r as for adults
was present in 2013 (Fig. 3-8). Both model versions were able to reproduce the mark-correlation
function kmm(r) for adult trees after 15 simulation years compared to the field data. However, while the

biotic model versions simulated a positive correlation for saplings, the combined model version
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simulated only weak positive to no correlations for saplings at all. For the biotic model version, the
positive correlation was the strongest at short distances r and decreased with increasing distance. For
the combined model version, the dependency on distance r was comparable to the field data in 2007,
however, with a random overall kmm(r) value (Fig.3-8). After 50 simulation years the positive
associations for saplings at small distance r increased for the biotic model version. Interestingly, a
similar pattern developed for the combined model version at short distances r. At larger distances, the

mark-correlation function kmm(r) tended towards no correlation (Appendix Fig. A3-8).
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Figure 3-8: Mark-correlation function kmm(r) for the biotic model version and the combined model version
(envelopes) after 15 simulation years and the field data censuses in 2007 (solid line) and 2013 (dashed line).
Individuals are classified to size groups (sapling: 1 < dbh <10 c¢cm, adult: dbh > 10cm) indicated by colour
(saplings: blue; adults: red).
4. Discussion

We developed an individual-based simulation model to study the importance of abiotic processes,
i.e. environmental heterogeneity, in a temperate old-growth forest dominated by F. sylvatica. While
biotic process are important in temperate forests (Coates et al., 2009; Martinez and Gonzalez-Taboada,
2009; Wang et al., 2010a; Zhang et al., 2014), abiotic processes have also been shown to influence
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dynamics (Getzin et al., 2008; Shen et al., 2013; van Waveren, 2016). To study the importance of the
contrasting processes, we developed two model versions, one including only biotic processes and one
combining biotic and abiotic processes. To validate the model versions, we compared non-spatial and
spatial model output to a forest dynamics plot. Even though former silviculture imprints are still present
in the forest dynamics plot, the species composition and structure already developed towards and
resembles an old-growth beech forest (Butler-Manning, 2007; Huss and Butler-Manning, 2006). Results
showed that only the combined model version was able to simulate spatial patterns comparable to field
data. Similar to our model, Jeltsch et al. (1998) showed that introducing environmental heterogeneity
linked to tree establishment and survival improved their ability to model realistic and stable tree-grass
coexistence in a savanna system compared to a first model version without abiotic processes (Jeltsch et

al., 1998).

One basic requirement of pattern-oriented modelling was demonstrated by our study, namely that
several non-spatial and spatial patterns on different hierarchical levels should be considered (Grimm et
al., 2005; Janssen et al., 2009; Wiegand et al., 2003). While both model versions were able to fit one or
two patterns satisfactorily, no model version was able to fit multiple patterns simultaneously; a
circumstance also experienced by other studies (May et al., 2016, 2015). However, also the failure of
the model versions can help to identify important (missing) ecological processes and questions that need
further research (May et al., 2015). In our study, especially including spatial patterns was a powerful
“filter” of non-realistic processes and helped to develop a more structurally realistic model (Wiegand et
al., 2003). This also highlighted the importance of explicitly including scale and space into ecological

analysis and modelling (Brown et al., 2011; Chase, 2014; Wallentin, 2017).

Basically, all processes in the model depended on the dbh. Thus, when introducing environmental
heterogeneity, firstly only the growth process was modified. However, this did not lead to noteworthy
changes of the model output. Environmental heterogeneity influences seedling survival and
establishment (Beckage and Clark, 2003; Gomez-Aparicio, 2008; Linetal., 2017; Terborgh et al., 2014)

and preferred habitats exist for seedlings (Masaki et al., 2015). Similarly, also general mortality was
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shown to be influenced by environmental heterogeneity (Getzin et al., 2008). Therefore, to simulate
spatial model output comparable to the field data to a higher degree, we additionally modified seed

establishment and the mortality process.

The combined model version required the calculation of environmental heterogeneity based on the
intensity A(x,y) with two different standard deviations of the smoothing kernel ¢ (Baddeley etal., 2015).
Thus, the parameter can be understood as a spatial scaling parameter of environmental heterogeneity. A
smaller o parameter was used for growth processes compared to seed establishment as well as the
mortality process. Because mortality was most dominant for seedlings, this might reflect that habitat
associations differ between different life-history stages (Comita et al., 2007; Lai et al., 2009) and site
requirements change over ontogeny (Bertrand et al., 2011; Masaki et al., 2015). However, it is also
possible that the intensity of adult trees as a proxy for suitable growing conditions throughout the study

area (Getzin et al., 2008) did not reflect suitable growing conditions for seedlings and saplings.

On a population level, the biotic model was able to realistically simulate the number of individuals.
Contrastingly, the combined model version resulted in a too small population size already during the
first simulation years. Interestingly, differences between the model output and the field data became
evident also for the biotic model version after the time period used for data fitting was exceeded
(Holzwarth et al., 2013). The sensitivity analysis revealed that mortality is the most important process
for the number of individuals. The accuracy of mortality models relies on the similarity between data
used for model fitting and data used for model validation (Hulsmann et al., 2017). With increasing
simulation years, this similarity might have decreased, leading to larger differences between model data

and field data.

At the same time, both model versions were able to reproduce a relative dbh distribution similar to
the field data. The dbh distributions were characterised by a high number of trees in smaller dbh classes
and a decrease of trees with a larger dbh. Similar shaped diameter distributions can be found in European
virgin beech forests (Westphal et al., 2006). This shows that even though the absolute number of

individuals and mortality contradicted between both model versions and the field data, the relative dbh
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structure could be simulated by both model versions with the exception of small dbh classes. Because
mortality was most prominent in smaller dbh classes, again a too high mortality seemed to be the reason
for the larger differences of the combined model version. Similar to the number of individuals,
discrepancies increased with increasing simulation years. Because mortality was also the most
influential process for the dbh distribution, the similarity between data used for model fitting and data
used for model validation probably decreased and thereby the accuracy of the mortality model decreased
(Hilsmann et al., 2017). Possibly because structural and spatial differences were larger between the
biotic model version output and the field data compared to the combined model version, the

discrepancies were larger for the biotic model version than for the combined model version.

Comparing spatial patterns showed increased inconsistencies between both model versions.
Interestingly, even though the initialisation pattern was clustered at small distances r and seed dispersal
was spatially limited, the biotic model version output showed a decrease of clustering already after
15 simulation years and even a mostly random pattern after 50 simulation years. Possible processes that
could counteract a clustering of seedlings include increased competition or decreased survival
probability of seedlings close to conspecific adult trees due to host-specific seed predators, herbivores
and pathogens (Janzen-Connell hypothesis; Comita et al., 2014). However, the spatial pattern of
F. sylvatica seedlings, saplings and understory trees was shown to be clustered at small distances (Janik
et al., 2016; Kunstler et al., 2004; Nagel et al., 2006). This is often explained by spatially limited
barochorous seed dispersal of the relatively heavy seeds of F. sylvatica (Wagner et al., 2010), leading
to an increased number of seeds close to the source tree (Butler-Manning, 2007; Martinez and Gonzélez-
Taboada, 2009) and positive associations between seedlings and adult trees (Martinez et al., 2013). Yet,
our model showed that limited seed dispersal could not maintain a clustered pattern of seedlings over a

longer time period.

Positive and negative habitat associations reflect the idea that individuals are more or less frequent
in certain habitats caused by habitat-related performance (Harms et al., 2001), which leads to clustering

in favourable growing conditions (Shen et al., 2013). In temperate forests, positive and negative habitat
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associations are present at the sapling stage (Hesselbarth et al., in prep.; Ye et al., 2011). Strong
clustering at small distances r was only achieved over a longer simulation period when increased and
decreased seed survival and mortality at favourable and unfavourable growing conditions was
introduced for the combined model version. The strong clustering of the field data in 2013 was not
reached, but this was caused by few high-density clusters for the field data. However, with increasing
temporal extent, the clustering decreased for the combined model version. This might have indicated
that with the used parameterisation, the influence of environmental heterogeneity was not strong enough

on the spatial patterns of trees.

Adult trees showed a regular pattern at short distances r and a random pattern at medium and longer
distances r as well as negative associations of the dbh at short distances r for the field data. Generally,
this is related to competition, because density-dependent mortality leads to a maximisation of tree-to-
tree distances and prevents large trees from neighbouring each other (Stoll and Bergius, 2005; Suzuki
et al., 2008; Waélder and Walder, 2008). Even though competition was high for adult trees for the abiotic
model as well, the pair-correlation function g(r) resembled “virtual aggregation” (Wiegand and
Moloney, 2004). “Virtual aggregation” describes clustered spatial patterns with few or no individuals
present in larger areas of the study area (Veldzquez et al., 2016; Wiegand and Moloney, 2004). While
including abiotic processes improved the model fit for saplings, the virtual aggregation of adults might
indicated again that abiotic conditions and processes differ between saplings and adult trees (Comita et
al., 2007; Yeetal., 2011). This was also supported by the sensitivity analysis showing that the sensitivity

of both the non-spatial and spatial model outputs differed between saplings and adults.

The mark-correlation function kmm(r) for the biotic model version suggested facilitation effects for
saplings at smaller distances r. The stress gradient hypothesis predicts that facilitation is more common
in harsh environments (Callaway, 2007), but facilitation is also important under moderate conditions
(Holmgren and Scheffer, 2010). However, competition, especially for light, was shown to be important
for F. sylvatica. (Collet and Chenost, 2006; Wagner et al., 2009). The negative associations of the mark-

correlation function of the field data rather suggested competition among saplings. Even though also the
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combined model version indicated a positive correlation for saplings at small distances r, contrastingly
to the biotic model version the correlation tended towards no correlation with increasing distance r. For
the combined model version, competition values were marginally higher due to higher densities at
suitable growing conditions. This might have led to decreased growth within these high-density clusters
and following a lower mark-correlation function kmm(r) at short distances r. However, similar to the pair-
correlation function g(r), the influence of environmental heterogeneity on the spatial pattern might not

have been strong enough with the used parametrisation.

We demonstrated in this study that the explicit consideration of environmental heterogeneity resulted
in a better agreement between model data output and field data of a temperate old-growth forest. The
first implementation and parametrisation of the individual-based simulation model presented here
allows further improvements of the model as well as further research questions. Pattern-orientated
modelling can be a powerful tool to parametrise the model (Grimm et al., 2005; Wiegand et al., 2003).
Especially the seed dispersal and establishment process would benefit from further optimisations of the
parameters using field data. This could also include e.g. long-distance dispersal events by animals
(Martinez and Gonzélez-Taboada, 2009). Related to this, another improvement could be to physically

restrict successful seedling establishment at locations a tree is already growing.

Another possible improvement of the model could be a different competition kernel. Especially for
larger trees, the annual dbh growth was larger for both model versions compared to the field data.
Because larger trees were mostly neighboured by smaller trees and distances between larger trees were
generally greater (Appendix Fig. A3-9), one possible explanation was a too short-sighted competition
kernel. This could have resulted in a too small growth reduction for larger trees. However, another
commonly used competition kernel (Uriarte et al., 2004) resulted in a similar shape, but was even more
short-sighted. Thus, a completely different kernel shape (e.g. sigmoidal) might be worth considering.
Alternatively, a higher influence of smaller trees on larger trees could be an improvement of the used

competition kernel.
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As already discussed, using the intensity of adult trees might not have been a good proxy for the
growing conditions of seedlings and saplings. Therefore, using different ways to characterise
environmental heterogeneity would be another possible improvement. For this, it would be possible to
use non-linear scaling approaches for the intensity layer or different layers for different size groups. Of
course, not using the intensity as a proxy, but meaningful field data describing soil conditions to
characterise the growing conditions would be the most desirable possibility to characterise

environmental heterogeneity (Chang et al., 2013).

As a next step, extending the model to a multi-species setting would allow the study of questions
related to species coexistence (Hart et al., 2017; Masaki et al., 2015). In this context, because tree growth
was shown to be influenced differently by intra- and interspecific competition of neighbouring trees
(Canham et al., 2006; Coates et al., 2009; Ratcliffe et al., 2015), the importance and influence of intra-

and interspecific competition between individuals on the spatial model output would be of interest.

In conclusion, the comparison between the biotic and combined model versions showed that
especially spatial patterns could not be matched by the biotic model version. Only including
environmental heterogeneity and a modification of almost all processes considering this heterogeneity
produced a satisfactory fit to spatial patterns of field data from a temperate old-growth forest. This was
mainly related to processes of earlier life-history stages, namely to seed establishment and survival of

seedlings and saplings under favourable growing conditions.
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Chapter 4 - landscapemetrics: An open-source R tool to calculate landscape
metrics

This chapter was published as: Hesselbarth, M.H.K., Sciaini, M., With, K.A., Wiegand, K., Nowosad, J., 2019.
landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42(10), 1648-1657.
<https://doi.org/10.1111/ecog.04617>

Abstract

Quantifying landscape characteristics and linking them to ecological processes is one of the central goals
of landscape ecology. Landscape metrics are a widely used tool for the analysis of patch-based, discrete
land-cover classes. Existing software to calculate landscape metrics has several constraints, such as
being limited to a single platform, not being open-source, or involving a complicated integration into
large workflows. We present landscapemetrics, an open-source R package that overcomes many
constraints of existing landscape metric software. The package includes an extensive collection of
commonly used landscape metrics in a tidy workflow. To facilitate the integration into large workflows,
landscapemetrics is based on a well-established spatial framework in R. This allows pre-processing of
land-cover maps or further statistical analysis without importing and exporting the data from and to
different software environments. Additionally, the package provides many utility functions to visualise,
extract, and sample landscape metrics. Lastly, we provide building-blocks to motivate the development
and integration of new metrics in the future. We demonstrate the usage and advantages of
landscapemetrics by analysing the influence of different sampling schemes on the estimation of
landscape metrics. In so doing, we demonstrate the many advantages of the package, especially its easy
integration into large workflows. These new developments should help with the integration of landscape
analysis in ecological research, given that ecologists are increasingly using R for the statistical analysis,

modelling, and visualisation of spatial data

1. Introduction

Understanding how landscape characteristics affect ecological processes and the spatial distribution
of species and communities is central to ecology (Kupfer, 2012; Turner, 2005, 1989). Thereby, one

major challenge is how to describe and quantify landscape characteristics (Lausch et al., 2015; Turner,
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2005). Typically, landscapes are characterised as discrete patches of different land-cover classes
(Forman, 1995; Forman and Godron, 1986; Wiens, 1995) which has several benefits. These include a
straightforward application and communication (Lausch et al., 2015; McGarigal et al., 2009), especially
in human-dominated landscapes where the distinction between different land-cover classes is rather
clear-cut (Lausch et al., 2015). While other landscapes may be better described by a gradient-based
description of landscape structure (Cushman et al., 2010; McGarigal et al., 2009), the landscape-mosaic

model remains the dominant paradigm (Kupfer, 2012; With, 2019).

To quantify the composition (number and abundance) and configuration (spatial arrangement) of
different land-cover classes, numerous landscape metrics have been developed and extensively applied
to the analysis of landscape structure (Gustafson, 2019, 1998; Uuemaa et al., 2013). Such landscape
metrics are commonly used to facilitate comparisons among different landscapes; to quantify how
landscapes change over time, especially in response to different types of disturbances or land-use
pressures; and to investigate the relationship between landscape characteristics and other ecological
patterns (Uuemaa et al., 2009). Some recent examples of these sorts of applications include studies of
how landscape characteristics of temperate forests differ between years of low and high natural
disturbance activities (Senf and Seidl, 2018), how land-use intensity affects agricultural landscapes and
associated biodiversity (Decaéns et al., 2018), and how distributional patterns of birds with different

habitat affinities are related to landscape heterogeneity (Herrera et al., 2018).

One commonly used software to calculate landscape metrics is the stand-alone software
FRAGSTATS (McGarigal et al., 2012). First published in 1995, FRAGSTATS was the first software to
provide an extensive collection of landscape metrics, and subsequently, revolutionised landscape pattern
analysis (Gustafson, 2019; Kupfer, 2012). However, ecologists are increasingly turning to R (Sciaini et
al., 2018), a language originally developed for statistical computing (R Core Team, 2019). Nowadays,
R is more and more used for the analysis, modelling, and visualisation of spatial data (e.g. Fletcher and
Fortin, 2018). One benefit of R is its active community that constantly develops software packages for

specific tasks. The R package SDMTools (VanDerWal et al., 2019) includes a small subset of landscape
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metrics, but until now there is no comprehensive, dedicated R package to calculate landscape metrics.
Therefore, the development of new software that facilitates the application of landscape metrics is still
necessary to keep pace with the changing needs and expectations of ecologists wanting to perform

landscape analysis.

Here, we present landscapemetrics, an extensive collection of widely used landscape metrics for the
analysis of discrete land-cover maps, including the most commonly used metrics (Cushman et al., 2008;
Lustig et al., 2015; Schindler et al., 2008), as well as some recent ones (e.g. joint entropy; Nowosad and
Stepinski, 2019). To demonstrate its application, we present an analysis of how different sampling
schemes influence the estimation of landscape metrics using neutral landscape models that vary in
spatial autocorrelation by adopting a virtual ecologist approach (Zurell et al., 2010; Appendix Fig. A4-

1).

2. The R package landscapemetrics

The core of landscapemetrics comprises functions to calculate landscape metrics and uses raster data
as input. Therefore, the package is mainly based on the well-established raster package (Hijmans, 2019),

but the use of next-generation frameworks is also possible (stars package, Pebesma, 2019).

At present, landscapemetrics primarily includes the so-called FRAGSTATS-style metrics (Kupfer,
2012; McGarigal et al., 2012), but other types of metrics are planned for future updates. The current
software version includes metrics on all available levels, namely patch-, class-, and landscape-level.
Patch-level metrics describe every patch in a landscape (a patch being defined as contiguous cells
belonging to the same land-cover class). Class-level metrics describe all patches belonging to a certain
land-cover class. Lastly, landscape-level metrics describe the characteristics of the entire landscape
(McGarigal et al.,, 2012). Additionally, landscape metrics can be classified according to the
characteristics of the landscape they (conceptually) describe (McGarigal et al., 2012; Simova and
Gdulovd, 2012). landscapemetrics includes area and edge metrics, shape metrics, core area metrics,
aggregation metrics, diversity metrics, as well as complexity metrics. For a full list of all metrics, see
the package documentation (<https://r-spatialecology.github.io/landscapemetrics>).
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2.1 Improvements over existing software tools
Though popular, FRAGSTATS has certain drawbacks (Table 4-1). As a stand-alone software, it

requires data import to the software for integration into large workflows. If the resulting metrics are the
basis for further analysis, they must then be exported to yet another program. Additionally, the analysis
of several input layers or the use on high-performance clusters is rather laborious. Also, FRAGSTATS is
not open-source software and only available for Windows operating systems. This can complicate
transparency and reproducibility of the analysis workflow, and collaboration among researchers using

different computing platforms.

Contrastingly, R is open-source and available for most common operating systems (including
Windows, macOS, and Linux). The existing R package SDMTools calculates a limited number of
landscape metrics, and thereby overcomes some of the above-mentioned limitations of FRAGSTATS.
But, as this package was primarily developed for species distribution modelling rather than landscape
analysis, it cannot fully replace FRAGSTATS (Table 4-1). The use of the package for landscape analysis
is rather cumbersome. To calculate patch-level metrics, the data must first be converted to a matrix and
a loop through all land-cover classes implemented (Example 4-1). Furthermore, SDMTools does not
permit a sub-selection of metrics and no further parameterisation of metrics is possible. Additionally,
the user must specify the cell resolution manually for all area- and distance-related calculations,
introducing a possible error source. Also, the output format makes integration of the results into large

workflows difficult. Lastly, to our knowledge, SDMTools is not actively developed anymore.
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Table 4-1: Main characteristics and features of FRAGSTATS, SDMTools and landscapemetrics. The available

metric levels are abbreviated: p = patch level, ¢ = class level, | = landscape level.
Characteristics FRAGSTATS SDMTools landscapemetrics
open-source software no yes yes
cross-platform compatibility no yes yes
available metric levels p,c, | p, C p,c, |
parametrisation of metrics yes no yes
tidy data format no no yes
easy integration into workflows no no yes
utility functions sampling no various
restrictions due to numeric precision yes1 no no

1FRAGSTATS does not allow a cell resolution <0.005 map units of the input raster.

landscapemetrics provides an extensive collection of widely used landscape metrics for discrete
land-cover maps, including most of the commonly used metrics used in landscape analysis (Cushman
et al., 2008; Lustig et al., 2015; Schindler et al., 2008), as well as some recent ones (e.g. joint entropy;
Nowosad and Stepinski, 2019). Because landscapemetrics is written in the R programming language, it
operates across operating platforms. Given the variety of R packages, this also enables the user to run
the software easily in parallel or on high-performance clusters. To ensure integration into large
workflows, landscapemetrics is based on a well-established spatial framework in R (mainly the raster
package). This allows pre-processing of data, calculation of metrics, and further analysis of the results,
all within the same software environment. This also facilitates its usage with other spatial objects in R
(e.g. sp spatial points, Pebesma and Bivand, 2005). Additionally, the use of raster data has advantages
in having all required spatial information included and eliminating possible error sources, such as a
misspecified cell size. To simplify integration further, the output of all metric functions is tidy (sensu
Wickham, 2014) and type stable, meaning the returning data frame is identically structured regardless
of the level or metric (Table 4-2). This facilitates reproducible workflows (Sandve et al., 2013). The
package is open-source, which allows users to comprehend and improve upon existing metrics, as well

as to contribute new functions. All functions were designed to calculate landscape metrics in a
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straightforward way (Example 4-1). Lastly, the package provides several utility functions (Table 4-3) to
facilitate visualisation, extraction, sampling, and development of metrics.
2.2 Calculation of landscape metrics

The first step of every analysis should be a check if the input raster is suitable for landscapemetrics
using check_landscape(). The function checks if the coordinate reference system is projected, if the
cell units are in meters, if the classes are decoded as integer values, and if the number of different values
is reasonable (in other words if discrete land-cover classes are present). In case the input is not or only
partially suitable, a corresponding warning is produced. This means that a calculation of metrics is still

possible, but some results must be interpreted with caution (e.g. area- and distance-related metrics).

To get an overview of all available metrics, landscapemetrics provides the function 1ist_lsm().
It is possible to specify metrics by name, level, and/or type. Of course, all specifications can be
combined. Also, rather than a data frame, it is possible to return a vector with function names. For
example, the vector format makes it straightforward to get only the function names of all patch- and
class-level aggregation metrics for lateruse by 1ist_1sm(level = c("patch"”, "class"), type

= "aggregation metric", simplify = TRUE).

All functions to calculate landscape metrics are consistently named in landscapemetrics. Functions
to calculate a given metric have the prefix “1sm_" followed by an abbreviation for the level (“p”, “c”
or “1” for patch-, class- and landscape-level, respectively) and lastly for the metric itself. For example,

the class area for each land-cover class is calculated simply by 1sm_c_ca(). All functions can handle

several landscapes as input (either a list of RasterLayers or a RasterStack/RasterBrick).

Several metrics, regardless of the level, can easily be combined into one data frame because the
resulting output is always an identically structured data frame (Table 4-2). Therefore, the results of the
desired metrics can be combined using, for example, rbind(1lsm_p_area(x), 1lsm_1 ai(x)).
Because all output is tidy following widely accepted data science standards, further analysis of the

resulting data frame is possible without laborious data import/export or formatting (see Section 3).
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Table 4-2: Structure of the output table used for all metrics in landscapemetrics. The output is type stable, which

simplifies integration into larger workflows.

layer level class id metric value
<integer> <character> <integer> <integer> <character>  <double>
ID of Level of ID of class; ID of patch; Abbreviation  Value of
landscape metric NA for NA for class and of metric metric
landscape level landscape level

Many functions provide additional parametrisation, such as the edge depth or the cell neighbourhood
rule for patch delineation. For example, to change the patch delineation rule for the patch area, only the
argument directions must be changed from its default using the “queen’s case” (eight neighbouring
cells) to the “rook’s case” (four neighbouring cells), i.e. 1sm_p _area(x, directions = 4).Of

course, all arguments are consistently named across metrics.
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library(dplyr)
library(landscapemetrics)
library(SDMTools)

library(raster)

#it## SDMTools #it##
result_patch <- list() # preallocate list

classes <- unique(landscape) # all present classes

# loop through all classes

for(i in seq_along(classes)) {
landscape_matrix <- as.matrix(landscape) # convert to matrix
landscape_matrix[landscape_matrix != i] <- @ # binarize landscape
landscape_matrix[landscape_matrix == i] <- 1 # binarize landscape
ccl <- ConnCompLabel(landscape_matrix) # get patches

result_patch[[i]] <- PatchStat(ccl, cellsize = 1) # patch metrics

result_patch <- bind_rows(result_patch,

.id = "classID") # combine to one df

result_patch <- filter(result_patch,

patchID != @) # only present classes

area_SDM <- result_patch[, c(1, 2, 7)] # select only area

perim_SDM <- result_patch[, c(1, 2, 9)] # select only perimeter

#### landscapemetrics ####
area_lsm <- 1lsm_p_area(landscape) # calculate patch area

perim_lsm <- 1lsm_p_perim(landscape) # calculate patch perimeter

Example 4-1: Comparison of SDMTools and landscapemetrics workflows to calculate patch area and patch

perimeter. SDMTools requires a loop through all present land-cover classes and a binarisation of the input to 1

for the current class and 0 for all other classes. Also, the desired metrics must be filtered from the resulting data

frame.
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The calculate_1lsm() wrapper can be used to calculate several metrics simultaneously. Similar
to 1ist_1sm(), this wrapper allows specifying a subset of metrics using the name, level, and/or type,
such as calculate_lsm(x, level = “landscape”, type = “diversity metric”).
Alternatively, a vector (e.g. previously created using list_1sm()) with function names can be
provided as what-argument. The returning data frame is identical to the output of all single metric
functions.

2.3 Utility functions

An additional advantage of landscapemetrics over existing software tools for landscape analysis lies

in its utility functions (Table 4-3). These functions are designed to facilitate the application,

visualisation, extraction, sampling, and development of landscape metrics.

Visualisation functions, which help to understand and communicate metrics, start with the prefix
“show_” followed by the subject to visualise. It is possible to include either all classes in one plot
(class = “global”), all classes but each plotted separately (class = “all”), or just selected
classes (class = c(1, 3)).Patches in a landscape can be visualised by show_patches() (Fig. 4-
1B), or to visualise only the core area, there is show_cores() (Fig. 4-1C). Additionally, patches can
be filled with the value of any patch level metric, such as the patch area using show_1sm(x, what =
“lsm_p_area”). Itis also possible the get the result as a RasterLayer, using spatialize_lsm().In
the returning RasterLayer, each cell has the value of the corresponding patch for any chosen metric.
Correlations between metrics can be problematic (Cushman et al., 2008; Nowosad and Stepinski, 2018;
Schindler et al., 2008) and the selection of mainly uncorrelated metrics can be a challenge. Providing a

data frame with metric results, show_correlations() returns a correlation matrix plot.
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Table 4-3: Overview of utility functions in the landscapemetrics package.

Area of Function name Description
application

Visualisation show_patches() Plot patches in the landscape

Visualisation show_cores() Plot core areas in the landscape

Visualisation show_1sm() Plot landscape filling cells with patch level

metric value

Visualisation show_correlation() Show correlation between metrics

Sampling sample_1sm()  Sample metrics in a buffer around sample

points

Sampling extract_lsm() Extract landscape metric of patches

enclosing sample points

Sampling window_1lsm() Moving window analysis
Building block get _adjacencies() Get class cell adjacencies
Building block get_boundaries() Get boundary cells of patches
Building block  get_circumscribingcircle() Get diameter of the smallest

circumscribing circle around patches

Building block get_nearestneighbour() Get minimum Euclidean distance between

classes
Building block get_patches() Patch delineation
Various check_landscape() Check if input fulfils package

requirements
Various list 1sm() List all available metrics

Various spatialize 1sm() Assign patch metric to each cell

There are several functions to sample landscape metrics. Sample locations can be provided either as
a matrix including x- and y-coordinates or as sp-objects and for all sampling functions, the metrics can
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be specified similar to 1ist_1sm(). The function extract_lsm() returns the patch-level metric
values of each patch in which sample points are located. To calculate metrics in a buffer around sample
points, sample_1lsm() can be used, allowing to specify the shape (circle, square, or rectangle) and the
area of buffers around sample points, and then calculates the specified metrics. Landscape metrics are
known to be scale dependent (Lausch and Herzog, 2002; Lustig et al., 2015; Wu, 2004) and using a
moving window can be an approach to deal with this (e.g. Su et al., 2011). The moving window assigns
to each focal cell in the landscape the metric value of its local neighbourhood specified by a
neighbourhood matrix (McGarigal et al., 2012). The resulting raster describes the landscape in regard
to the local variability of the chosen metric (Hagen-Zanker, 2016). Within landscapemetrics, a moving
window approach can be applied by using window_1sm(). The local neighborhood can be specified
using, for example, window <- matrix(1, nrow = 5, ncol = 5), followed by window_1lsm(x,

window = window, what = c("1lsm_1 pr", "lsm_ 1 joinent™)).

A) Landscape B) Patches C) Core Area

o o
o oo

Figure 4-1: Visualisation of an example landscape (a) using the utility functions show_patches() (b) and

show_cores () (c) for a selected class.

Lastly, landscapemetrics provides several building-blocks to develop and contribute new metrics.
These functions all start with the prefix “get_” and are mainly computationally fast C/C++
implementations of common raster procedures. Of these, get_patches() is the most fundamental, as
it returns all connected cells as patches and is used in most metrics. Another useful function is
get_adjacencies(), which returns the adjacency matrix of all cells, and is easier to use, faster, and

more memory efficient than its equivalent in the raster package (Example 4-2). Finally,
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get_nearestneigbhour() returns the minimum Euclidean distance between patches of the same
class, and get_circumscribingcircle() returns the diameter of the smallest circumscribing circle

around each patch.

library(landscapemetrics)
library(dplyr)

library(bench)

#i#t## raster #HH###

adj_raster <- function(x) {
# get cell ids of neighboring cells
adjacencies <- raster::adjacent(x, cells = 1:raster::ncell(x))
# table of values of neighboring cells

table(x[adjacencies[, 1]], x[adjacencies[, 2]])

adj_raster(landscape)

#### landscapemetrics #it#t#

get_adjacencies(landscape)

#i### benchmark of both options #i#
mark(adj_raster(landscape),
get_adjacencies(landscape),

iterations = 10000, check = FALSE)

# A tibble: 2 x 3

expression mean mem_alloc
<chr> <bch:tm> <bch:byt>
1 adj_raster(landscape) 8900 us 1470 KB
2 get_adjacencies(landscape) 562 s 6 KB

Example 4-2: Comparison between raster and landscapemetrics to get the cell adjacency matrix of a raster. Not
only is the landscapemetrics solution much easier, but it is also computationally faster and more memory efficient.
The benchmark was done on Windows 10 (32 GB RAM, Intel i7 core, 3.4 GHz), using R 3.5.1 and 10000 iterations
of each function.
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3. Use Case

Here, we aim to demonstrate some of the advantages of the package, especially its easy integration
into large workflows. To this end, we apply landscapemetrics to analyse the effect of different sampling
schemes on the estimation of landscape metrics. All code to reproduce the use case can be found at

<https://zenodo.org/record/2597976>.

Although the collection, processing, and analysis of spatial data across landscape and regional scales
has become commonplace, ecologists still need to subsample data from a larger landscape. Possible
reasons are atmospheric conditions, logistical or budget constraints, or the use of unmanned aerial
vehicles, resulting in high-resolution imagery but with limited extent (Getzin et al., 2012). Even though
landscape metrics are known to be sensitive to various scaling issues (Lausch and Herzog, 2002; Lustig
et al., 2015; Wu, 2004), the quality of the sample mean as an estimator has only been investigated for a
subset of metrics and specific sampling schemes (Hassett et al., 2012; but see Ramezani et al., 2010;

Ramezani and Holm, 2011).

We used the virtual ecologist approach (Zurell et al., 2010; Appendix Fig A4-1) which can be
summarised in four major steps: i) a virtual ecological simulation model of an ecosystem (or landscape,
in this case), ii) a virtual sampling process, sampling data from the virtual ecosystem or landscape, iii)
analyses of the sampled data, and iv) an evaluation of the results against the true value for the full virtual
ecosystem or landscape (Zurell et al., 2010). Following this approach, we first simulated neutral
landscapes (500%500 cells) containing five classes (relative proportion of 20% each) with either low,
medium, or high spatial autocorrelation, respectively (NLMR package, Sciaini et al., 2018). For each
landscape, we calculated all available landscape-level metrics that were invariant to the absolute plot
area (Appendix Table A4-1). Within each landscape, we sampled data using all 54 possible
combinations of plot size, landscape area sampled, plot shape, and spatial arrangement (Table 4-4). We
used the sample mean to estimate the landscape properties for the whole landscapes and evaluated the
estimated metrics against the true metrics using the root-mean-square error (RMSE, Hyndman and

. LA s (e-ny?
Koehler, 2006) normalised by the mean as nRMSE = —
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Table 4-4: Components of the sampling scheme. All 54 possible unique combinations were used for the analyses.

Size [cells] Sampled Shape Arrangement

landscape [%]

2500 7500 20000 ~10 ~35 ~75 Rectangle Square Circle Random Regular

29 ¢ 9% ¢

The metrics “area_cv”, “area sd”, “core cv”, “core sd”, “Isi”’, and “mesh” were estimated with a
NRMSE > 125% for all sampling schemes and spatial autocorrelations, and were thus removed from
further analyses. In general, we found that the accuracy and precision of the estimator decreased with
increasing spatial autocorrelation (Fig. 4-2). Across all metrics and spatial autocorrelations, the median
NRMSE decreased slightly as the area sampled increased (Fig. 4-2A). The median nRMSE across all
metrics and spatial autocorrelations was similar among plot shapes, but the extreme deviations slightly
increased for square and circular plots with increasing spatial autocorrelation (Fig. 4-2B). Finally, the
spatial arrangement of plots had no clear influence on accuracy and precision of the estimator (Fig. 4-

20).

We found that most landscape metrics were able to provide a fairly accurate and precise assessment
of landscape structure for landscapes with a low spatial autocorrelation, likely because individual plots
captured more of the inherent spatial heterogeneity present within the overall landscape (Hassett et al.,
2012; Wiens, 1989). Accuracy and precision decreased with increasing spatial autocorrelation, likely
due to increasing between-plot variability (Hassett et al., 2012). Accuracy and precision of the estimator
increased as the area sampled within the landscape increased because estimators increasingly converged
on the true landscape value. Although this has been found by others (Ramezani and Holm, 2011), the
influence was smaller than expected, perhaps because the same region of the landscape might have been
resampled due to overlapping sample plots. There were no clear differences between the three plot
shapes investigated (rectangular, circular, square). When spatial autocorrelation was low, the “salt and
pepper” properties of the landscapes were adequately captured by all plot shapes. Contrastingly, with
increasing spatial autocorrelation, rectangular plots provided a slightly more accurate and precise

estimation of landscape properties than did circular and square plots. Most likely, rectangular plots
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captured more spatial heterogeneity. A similar effect can be observed for species richness counts, where
more species can be found in elongated plots (Guler et al., 2016). Both regular and random arrangements
of sampling plots were able to capture landscape properties similarly well. This is not surprising for
landscapes with a low spatial autocorrelation, because the finer scale of heterogeneity means all
sampling distributions should perform similarly. However, in landscapes with high spatial
autocorrelation, a regular sampling array should better capture landscape structure than a random

sampling scheme, given the coarser scale of heterogeneity (Ramezani et al., 2010).
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Figure 4-2: Normalised root-mean-square error (nNRMSE) for different sampling schemes. The nRMSE is
summarised for all metrics and sampling schemes components not present on the corresponding x-axis. For a) the
sampled landscape is increased, for b) different sampling plot shapes, and for c) different spatial arrangements of
sampling plots are used. The solid lines represent the median, the boxes the middle 50% of the data and the
whiskers include 1% to 99% of the data. The y-scales differ among panels to highlight differences between the
sampling schemes.
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4. Discussion

The use case demonstrated many advantages of the landscapemetrics package, especially the easy
integration into large analysis workflows without the need of importing/exporting to or from different
software environments. This also facilitates usage in combination with other spatial R packages, such

as raster, sp, or NLMR.

Although the aimless calculation of landscape metrics is not recommended (Gustafson, 2019), in
cases where many metrics need to be calculated, landscapemetrics can calculate these with ease either
in parallel or on high-performance clusters. This lessens one disadvantage of landscapemetrics being
computationally slower for the calculation of some landscape metrics compared to FRAGSTATS and
SDMTools. The use of landscapemetrics in parallel computing or on high-performance clusters can also
be a huge advantage for studies where only a small number of metrics need to be calculated, but for

many landscapes, as in the use case demonstrated here with its large factorial design (see section 3).

The type-stable and tidy output also allows users to process results without much data formatting,
using data manipulation packages such as dplyr (Wickham et al., 2019), and furthermore, to produce

figures using plotting packages such as ggplot2 (Wickham, 2016).

Finally, being open-source and hosted on GitHub improves the transparency of the package and users
can easily file bug reports to ensure a rapid fix. This can also lead to the development of new functions
when requested by users on GitHub, as evidenced by several new functions that have been implemented

since the first release of the landscapemetrics package.

5. Summary

landscapemetrics is the first R package that allows calculation of most of the commonly employed
landscape metrics found in the ecological literature (Cushman et al., 2008; Lustig et al., 2015; Schindler
et al., 2008). Along with the package, a dedicated website introduces the basic concepts and usage of

landscapemetrics <https://r-spatialecology.github.io/landscapemetrics>.

Many characteristics, such as including a large set of landscape metrics, working across platforms,

being open-source, and the ability to analyse a comprehensive variety of spatial data within larger
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workflows, are all advantages of the package. The included utility functions that permit the visualisation,
extraction, sampling, and development of metrics, provide additional benefits over existing software.
We hope this helps integrate landscapemetrics more easily into larger workflows, enhances transparency

and reproducibility, and simplifies landscape analyses in ecological investigations.

Software availability

landscapemetrics is available on the Comprehensive R Archive Network (CRAN): <https://cran.r-
project.org/package=landscapemetrics> and is also hosted on GitHub: <https://www.github.com/r-
spatialecology/landscapemetrics>. landscapemetrics is distributed under GNU Public License Version
3 (GPLv3). To cite landscapemetrics or acknowledge its use, cite this Software note as follows,
substituting the version of the application that you used for ‘version 0’: Hesselbarth, M.H.K., Sciaini,
M., With, K.A., Wiegand, K., Nowosad, J. 2019. landscapemetrics: an open-source R tool to calculate

landscape metrics. - Ecography 42(10): 1648-1657 (ver. 0).
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Chapter 5 - General discussion

The aim of this thesis was to use spatial patterns to infer ecological processes and more precisely the
role of environmental heterogeneity. Because non-random patterns contain information about the
underlying processes, analysing spatial patterns can be a powerful tool to infer the processes (Brown et
al., 2016, 2011; Law et al., 2009). However, because the pattern-process link can be ambiguous
(Mclntire and Fajardo, 2009), different approaches including spatial point pattern analysis, individual-
based simulation modelling as well as landscape metrics were presented here to infer process from
pattern. Field data from a temperate old-growth forest was used and the role of abiotic processes and
possible interactions with biotic processes analysed. Naturally, biotic processes where shown to
influence the spatial patterns of trees (Coates et al., 2009; Martinez and Gonzalez-Taboada, 2009; Wang
et al., 2010b; Zhang et al., 2014), but also abiotic processes can have similar effects on spatial patterns
(Furniss et al., 2017; Getzin et al., 2008; Shen et al., 2013; van Waveren, 2016; Ye et al., 2011). While
many former studies are regionally biased towards species-rich tropical forests (e.g. Brown et al., 2013;
Chisholm and Pacala, 2010; Jara-Guerrero et al., 2015; Lin et al., 2017; Ramon et al., 2018), only a few

studies are present in temperate forests (but see Furniss etal., 2017; Ye et al., 2011).

Studying species-habitat associations is a widely used approach to show the influence of
environmental heterogeneity on the spatial pattern of trees. In the context of spatial point pattern analysis
(SPPA), two contrasting approaches to randomize the null model data exist (Harms et al., 2001; Plotkin
et al., 2000). In chapter 2, using a simulation study, it was firstly shown that the power of all methods
to detect species-habitat associations was comparable to each other. Nevertheless, all methods had both
advantages and disadvantages related to them. Even though pattern reconstruction had the highest
computational demand, the method was favoured because of its high accuracy and applicability
regardless of the study plot shape and the spatial pattern of the individuals. In accordance with similar
studies (Furniss et al., 2017; Ye et al., 2011), results of chapter 2 showed that abiotic processes in form
of species-habitat associations influenced the spatial pattern of tree species in the temperate old-growth
forest. In contrast to the hypotheses of chapter 2, this was also true for Fagus sylvatica L., the most

dominant species in the study area and central Europe in general (Leuschner and Ellenberg, 2017). As
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also shown for other forests (Comita et al., 2007; Kanagaraj etal., 2011; Lai et al., 2009; Ye etal., 2011),
species-habitat associations differed between life-history stages. Lastly, living and dead trees did not
show contrasting species-habitat associations as hypothesised. Concluding, chapter 2 demonstrated the
power of SPPA and species-habitat associations to show an influence of abiotic processes on the pattern
of forest trees. However, also the complexity of linking observed patterns to underlying processes was
exposed. Albeit patterns were significantly non-random and the simulation study confirmed that species-
habitat associations lead to identifiable patterns in the data, conclusions about the processes were mostly

hypothetical based on general ecological knowledge.

To overcome the limitations of chapter 2 and to model the pattern-process link in more detail (An et
al., 2009), an individual-based simulation model (IBM) was developed in chapter 3. Because variability
between individuals and interactions with a heterogeneous environment are easy to incorporate into
spatially explicit IBMs (An et al., 2009; DeAngelis and Grimm, 2014; Wallentin, 2017), IBMs are
highly appropriate to study the role of abiotic processes on tree populations. This is further supported
by their emergent higher level patterns based on discrete individuals (An et al., 2009; Grimm and
Railsback, 2005). The model had two model versions, one including biotic processes only and one model
version combining both biotic and abiotic processes. Spatial patterns for the biotic model version
developed towards complete spatial randomness for longer simulation periods. However, especially
seedlings, saplings and understory trees were shown to be clustered in the field (Janik et al., 2016;
Kunstler et al., 2004; Nagel et al., 2006). In order to model the clustered pattern of saplings in the field
data, several abiotic processes needed to be included into the model. In addition to growth, also seedling
establishment and mortality had to be influenced by environmental heterogeneity. Remarkably, two
different scales of environmental heterogeneity were required, which pointed towards differences of
abiotic processes depending on the life-history stage (Bertrand et al., 2011; Comita et al., 2007; Lai et
al., 2009; Masaki et al., 2015). This supported the results of chapter 2 showing that species-habitat
associations also differed between life-history stages. Lastly, because single patterns could be modelled

by both model versions, chapter 3 demonstrated the power of patterns in combination with IBMs to infer
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underlying processes, however, only if several patterns are used simultaneously (Grimm et al., 2005;

Janssen et al., 2009; Wiegand et al., 2003).

Because science is not only driven by ideas, but also by tools (Dyson, 2012), in chapter 4 the open-
source software tool landscapemetrics was introduced. In order to study the role of environmental
heterogeneity, one basic step is to quantify the heterogeneity. Landscape metrics are widely used to
quantify the spatial composition and configuration of land-cover classes. Despite that landscape metrics
are widely used (Kupfer, 2012; Uuemaa et al., 2013, 2009; With, 2019), existing software has several
drawbacks. This includes a complicated integration into larger workflows, not being open-source, being
limited to certain operating systems or not including a comprehensive collection of metrics.
Contrastingly, the R package landscapemetrics overcomes these drawbacks. Thus, it improves the
transparency and reproducibility of research (Powers and Hampton, 2018) and facilitates the
consideration of environmental heterogeneity in ecological studies, as already confirmed by its usage in
various studies (Bajaru et al., 2019; Gasparini et al., 2019; Heisler et al., 2019; Kendall et al., 2019;
Lucash et al., 2019; Maxence et al., 2019). The importance of considering environmental heterogeneity
even in apparently fairly homogenous conditions was clearly demonstrated by chapter 2 and chapter 3

of this thesis.

Future directions

Using spatial point pattern analysis, individual-based simulation models and landscape metrics
allowed to quantify environmental heterogeneity and link processes to patterns. However, there are

several options to describe and model the pattern-process link in more detail.

Even though this might be difficult for the whole study system, a supporting approach would include
specifically designed laboratory experiments on individuals (Grimm and Railsback, 2012; Stillman et
al., 2015). For this, especially the specific influence of environmental heterogeneity on seedlings would
be of interest. This is because firstly, the physical and temporal dimension related to seedlings would
allow such experiments and secondly, regeneration processes are often assumed to be crucial for the

overall population (Martin and Canham, 2010; Shibata et al., 2010). Because the quality of the
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environmental data has a large influence on the results (Chang et al., 2013), experiments might also
allow to improve how and which data about environmental heterogeneity should be sampled for future

research.

A better understanding of temperate old-growth forest dynamics will logically improve the ability to
conserve and protect them (Brang, 2005). Because forests provide many ecosystem services and refuges
for species (Wirth et al., 2009), this is especially important in times of climate change and biodiversity
loss. However, most forests in Europe are under management (Kuemmerle et al., 2016; Tieskens et al.,
2017). Nevertheless, a better understanding of old-growth forest dynamics can result in better near-to-
nature management, a policy commonly applied in central Europe (Puettmann et al., 2015). In the
context of this thesis, this could be realised in two different ways. Firstly, the IBM could be extended
by management submodels and the outcome of different management strategies analysed. Secondly,
similar studies could be implemented in comparable, but managed forests. This would allow to show
similarities and differences between unmanaged and managed forests and thus allow to deduce strategies

to mimic natural dynamics during management.

The role of environmental heterogeneity is scale dependent (Chase, 2014; Tamme et al., 2010).
Therefore, trying to scale results of the IBM to larger landscape scales could be an interesting direction
to take. However, not a trivial one. Scaling from smaller scales on which studies are reasonably feasible
to larger landscape or even global scales is an issue ecologists struggle with for many years now (Denny
and Benedetti-Cecchi, 2012; Henle et al., 2014). Nevertheless, local dynamics were shown to be able to
model landscapes patterns under various circumstances (Lischke et al., 2006). This could allow to use
SPPA on local scales to analyse the spatial structure very precisely. This information could be used to
construct and parametrise IBMs also on larger scales, e.g. by “assembling” a large landscape with
several local IBMs (i.e. a mosaic of local IBMs). Lastly, emerging patterns on landscape scale could be
evaluated using landscape metrics. Thus, such an approach would allow to link local descriptors of

spatial patterns across spatial scales to descriptors of spatial patterns on larger scales.
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As demonstrated by this thesis, environmental heterogeneity should be considered spatially explicit
in probably most ecological studies and spatial patterns can be a powerful tool to do so. Especially the
here presented combination of different methods is a promising approach to deal with the complexity of
possible interactions of abiotic and biotic processes. Nevertheless, of course countless other

combinations with different approaches exit and will hopefully be explored in future research.
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Figure A2-1: Relative abundance and basal area of all present species in the study plot. The study plot is
dominated by F. sylvatica in terms of both number of stems and basal area. The relatively high basal area of
F. excelsior in combination with the comparable low number of stems indicates few but large individuals.
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Figure A2-2: Distribution of the diameter at breast height (dbh) for all living trees. The dbh is classified into 1 cm
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classes. The minimum and maximum diameters were 0.2 cm and 135.5 cm, respectively.
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Figure A2-3: Pair correlation functions g(r) for all trees and separated by species. The solid, black line reflects
the observed pattern, the grey envelopes 199 simulations of the null model of complete spatial randomness (CSR)
and the dashed line the theoretical value for CSR. A location of the observed values above the simulation envelopes

indicates clustering, a location below regularity (as indicated by the colour bars below).
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Figure A2-4: Mark-connection functions pi(r) for dead and living F. sylvatica trees. The solid, black line reflects
the observed pattern, the grey envelopes 199 simulations of the null model of random labelling. The dashed lines
represent the theoretical values of the null model. A location of the observed values above the simulation envelopes
indicates a positive correlation of marks, i.e. a higher probability of finding an event with mark j at distance r
from the focal event with mark i. Analogously, a negative correlation is indicated by a location of the observe
values below the simulation envelopes.
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Figure A3-1: Abiotic conditions used for the parameterisation and simulation of the combined model version. For
parametrising the competition and growth parameters, a smaller standard deviation of the smoothing kernel was
used (left panel) than for successful seed establishment and mortality processes (right panel). Low intensity values
describe unsuitable growing conditions, while high intensity values describe suitable growing conditions based

on the intensity A(x,y) of trees with a dbh > 10 cm.
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Figure A3-2: Example pair-correlation function g(r) to illustrate how it was summarised for the sensitivity
analysis. The absolute area above (blue) and below (red) the null model envelope (grey) for complete spatial
randomness (CSR) was summed and normalised by the total area under the observed curve. If the area above the

envelope was larger than the area below the envelope, the absolute area was positive and vice versa.
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Figure A3-3: Local one-at-a-time sensitivity analysis with the number of individuals as model output. The relative

difference of individuals after 50 simulation years between the baseline parameters and the one-at-a-time

decreased and increased parameters are depicted.
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Figure A3-4: Local one-at-a-time sensitivity analysis with the integral of the pair-correlation function as model

output. The relative difference of the integral after 50 simulation years between the baseline parameters and the

one-at-a-time decreased and increased parameters are depicted.
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Figure A3-5: Distribution of diameter at breast height (dbh) classes for the biotic and the combined model version
after 50 simulated years and field data of the censuses in 2007 and 2013. The dbh was classified using 10 cm

classes.
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Figure A3-6: Density of competition values for the biotic and combined model version after 50 simulated years
(surface) and field data census in 2007 (solid line) and 2013 (dashed line). Colours indicate size groups; saplings
(blue) are classified by a 1 <dbh <10 ¢cm and adults (red) by a dbh > 10 cm.
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Figure A3-7: Pair correlation function g(r) for the biotic model version and the combined model version

(envelopes) after 50 simulation years and the field data censuses in 2007 (solid line) and 2013 (dashed line).

Individuals are classified to size groups (sapling: 1 < dbh <10 c¢cm, adult: dbh > 10cm) indicated by colour

(saplings: blue; adults: red).
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Figure A3-8: Mark-correlation function kmm(r) for the biotic model version and the combined model version

(envelopes) after 50 simulation years and the field data censuses in 2007 (solid line) and 2013 (dashed line).

Individuals are classified to size groups (sapling: 1 < dbh <10 cm, adult: dbh > 10cm) indicated by colour

(saplings: blue; adults: red).
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Figure A3-9:a) The nearest-neighbour distribution function G(r) for saplings (solid blue line) and adults (solid
red line). The dashed grey lines indicate 50% and 100% of all individuals with the nearest neighbour at distance r.
b) Mean distance and standard deviation to the k nearest neighbour for saplings (blue) and adults (red). Both

figures indicate the distance to the nearest neighbour is smaller for saplings compared to adults.
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Table A4-1: All landscape metrics used for the simulation study analysing the influence of different sampling
schemes on the ability of sampled data to estimate the statistical properties of a larger landscape. The groups are
based on the FRAGSTATS classification (McGarigal et al. 2012) with the exception of the “Complexity metrics”,
which are based on Nowosad and Stepinski (2019). For detailed information on all metrics see

<https://r-spatialecology.github.io/landscapemetrics/>.

Group Metric n

ai

cohesion

contag

division

enn_cv

enn_mn

Aggregation metrics enn_sd 13

iji

Isi

mesh

pd

pladj

split

area_cv

area_mn

Area and edge metrics 8

area_sd

ed
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gyrate_cv

gyrate_mn

gyrate_sd

Ipi

Core area metrics

cai_cv

cai_mn

cai_sd

core_cv

core_mn

core_sd

dcad

dcore_cv

dcore_mn
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10

Diversity metrics

msidi

msiei

prd

rpr

shdi

shei

sidi
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Shape metrics

circle_cv

circle_mn

circle_sd
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Figure A4-1: Schematic visualisation of the “virtual ecologist” approach (Zurell et al. 2010) to analyse the

influence of different sampling schemes on the estimation ability.
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Abstract

One of the main goals of ecology is to understand processes underlying patterns. Because presumably
all ecological processes are spatially explicit, especially spatial patterns can contain a lot of information
about the processes shaping them. Nevertheless, the pattern-process link can be ambiguous. Reasons for
this include different processes that lead to similar patterns, interacting processes that lead to random
patterns or patterns that lead to processes and not the other way around. However, many of these issues
can be dealt with using appropriate analysis methods. This includes meaningful ecological hypotheses,
precise descriptions of patterns in the data as well as null models and model simulations to strengthen

the pattern-process link.

Biotic and abiotic processes were shown to interact in plant populations and to result in similar
clustered spatial patterns. The clustering can be introduced by limited seed dispersal as an example of
biotic processes, but also by higher densities of individuals at suitable growing conditions as an example
of abiotic processes. Even though challenging, analysing spatial patterns in the data can be a powerful

tool to disentangle the importance and interactions of these two processes.

The aim of this thesis was to present approaches that use the power of spatial patterns to study the
role of environmental heterogeneity. The methods included spatial point pattern analysis, individual-
based simulation models as well as tools to quantify environmental heterogeneity to link spatial patterns

to underlying processes. To this end, field data from a temperate old-growth forest was used.

In chapter 2, a simulation study of commonly used spatial point pattern analysis methods to study
species-habitat associations as indicator of abiotic processes showed that all methods were able to
indicate species-habitat associations from patterns. Furthermore, species-habitat associations were
shown to be present in the temperate old-growth forest for the most common species. Thereby, possibly
to avoid competition, some species showed opposing associations to the most dominant species Fagus
sylvatica. Furthermore, species-habitat associations differed between life-history stages. However,
using species-habitat associations as indicator of abiotic processes demonstrated one issue of the pattern-
process link. Many conclusions were, even though based on ecological knowledge, rather hypothetical.
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As a next step in chapter 3, an individual-based simulation model was developed to model the
pattern-process link in more detail. Individual-based simulation models allow to explicitly incorporate
assumed underlying processes and discriminate between alternative hypotheses. Hence, two model
version were implemented. In the first model version only biotic processes were included and in the
second model version biotic and abiotic processes combined. Only the combined model version was
able to simulate clustered patterns of individuals for earlier life-history stages comparable to the field
data over a longer time period. Interestingly, in order to do so, an influence of environmental
heterogeneity on three processes, namely growth, seedling establishment and mortality, needed to be
implemented. Additionally, two different scales of environmental heterogeneity were needed. This
indicated that environmental heterogeneity influenced several biotic processes, however, the influence

differed between life-history stages.

Lastly in chapter 4, a new open-source software tool to quantify environmental heterogeneity for
discrete land-cover classes was introduced in this thesis. Quantifying composition and configuration of
environmental heterogeneity is one of the fundamental steps in any study trying to establish a pattern-
process link. Nevertheless, existing software tools have several drawbacks and constraints that the here
introduced R package tries to overcome. The software allows an integration into reproducible and
transparent workflows and thereby hopefully facilitates future research using patterns of environmental

heterogeneity.

Overall, the thesis demonstrated how spatial patterns can be used to explore underlying ecological
processes, even if contrasting processes lead to similar patterns as for biotic and abiotic processes. To
successfully link pattern to process, i) meaningful ecological hypotheses are needed, ii) patterns in the
data need to be described precisely using suitable methods and iii) appropriate null models as well as

model simulations need to be applied to link pattern to process as unambiguously as possible.
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Deutsche Zusammenfassung

Eines der Hauptziele in der Okologie ist es, die zugrunde liegenden Prozesse von Mustern zu verstehen.
Da vermutlich alle dkologischen Prozesse rdumlich explizit sind, kdnnen insbesondere rdumliche Muster
eine Vielzahl von Informationen tiber die sie gestaltenden Prozesse enthalten. Der Zusammenhang zwischen
Muster und Prozess ist jedoch nicht immer eindeutig. Grinde hierfiir sind verschieden Prozesse die zu
&hnlichen Mustern flhren, interagierende Prozesse die zu zufalligen Mustern fiihren oder Muster die
Prozesse beeinflussen und nicht entgegengesetzt. Vielen dieser Schwierigkeiten kann allerdings mit
geeigneten Methoden begegnet werden. Dazu gehdren sinnvolle ©kologische Hypothesen, genaue
Beschreibungen der Muster, sowie Nullmodelle und Simulationsmodelle um die Muster-Prozess Verbindung

zu starken.

Biotische und abiotische Prozesse interagieren in Pflanzenpopulationen und kdnnen in vergleichbaren,
geklumpten Mustern resultieren. Die Klumpung kann durch rdumlich limitierte Samenverbreitung verursacht
werden als Beispiel fur biotische Prozesse, aber auch durch eine héhere Dichte von Individuen an geeigneten
Wuchsbedingungen als Beispiel fiir abiotische Prozesse. Die Analyse rdumlicher Muster kann ein

leistungsstarkes Werkzeug sein, um die Rolle und Interaktionen dieser zwei Prozesse zu entwirren.

Das Ziel dieser Dissertation war es, Ansatze zu prasentieren, die rdumlichen Mustern benutzt um die
Rolle von Umweltheterogenitdt zu studieren. Die Methoden umfassten sowohl rédumliche
Punktmusteranalyse, Individuen-basierte  Simulationsmodelle, als auch Werkzeuge um die
Umweltheterogenitat zu quantifizieren, um rdumliche Muster mit den zugrundeliegenden Prozessen zu

verbinden. Dazu wurden Felddaten aus einem gemaRigten Naturwald verwendet.

Eine Simulationsstudie gangiger rdumlichen Punktmusteranalyse Methoden zur Untersuchung von Art-
Habitat-Assoziationen als Indikator flr abiotische Prozesse in Kapitel 2 zeigte, dass alle Methoden in der
Lage waren, vorhandene Assoziationen aufzuzeigen. Auch die hdufigsten Arten im untersuchten geméaBigten
Naturwald zeigten Art-Habitat-Assoziationen. Vermutlich um Konkurrenz zu vermeiden, zeigten einige
Arten gegensatzliche Assoziationen zur dominantesten Art Fagus sylvatica. Des Weiteren unterschieden sich

Art-Habitat-Assoziationen in den verschiedenen Entwicklungsstadien. Die Verwendung von Art-Habitat-
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Assoziationen als Indikator flr abiotischer Prozesse zeigte jedoch, dass viele Schlussfolgerungen eher

hypothetisch waren, wenn auch auf Grundlage 6kologischer Erkenntnisse.

Als néchsten Schritt wurde in Kapitel 3 ein Individuen-basiertes Simulationsmodell entwickelt, um den
Zusammenhang zwischen Muster und Prozess detaillierter zu modellieren. Individuen-basiertes
Simulationsmodelle erlauben es, explizit angenommene zugrundeliegende Prozesse zu integrieren und
zwischen alternativen Hypothesen zu unterscheiden. Daher wurden zwei Modellversionen implementiert.
Wahrend in der ersten Modellversion nur biotische Prozesse einbezogen wurden, wurden in der zweiten
Modellversion biotische und abiotische Prozesse kombiniert. Dabei konnte nur die kombinierte
Modellversion ein geklumptes Muster von Individuen friihere Entwicklungsstadien tber einen langeren
Zeitraum simulieren, die mit den Felddaten vergleichbar war. Interessanterweise musste dazu der Einfluss
von Umweltheterogenitdt auf drei Prozesse, namlich Wachstum, Samenverbreitung und Mortalitat,
implementiert werden. Zusétzlich mussten fir die Umweltheterogenitdt zwei unterschiedliche Skalen
beriucksichtigt werden. Dies deutete darauf hin, dass Umweltheterogenitdt mehrere biotische Prozesse

beeinflusst, die sich zusatzlich in den verschiedenen Entwicklungsstadien unterschieden.

Aulerdem wurde in Kapitel 4 eine neue Software eingefiihrt, um Umweltheterogenitat fiir diskrete
Landschaftsklassen zu quantifizieren. Die Beschreibung von Komposition und Konfiguration der
Heterogenitat, ist einer der grundlegenden Schritte um die Muster-Prozess Verbindung herzustellen.
Existierende Software hat dennoch einige Nachteile und Beschrankungen, die das hier vorgestellte R Paket
zu Uberwinden versucht. Die Software erlaubt eine Einbindung in reproduzierbare und transparente
Arbeitsabldufe und verbessert dadurch hoffentlich zukiinftige Forschung welche Muster von

Umweltheterogenitét verwendet.

Die vorliegende Dissertation zeigte, wie Muster verwendet werden konnen, um zugrunde liegende
Okologische Prozesse zu erforschen, auch wenn unterschiedliche Prozesse zu ahnlichen Mustern fiihren (wie
bei biotischen und abiotischen Prozessen). Um Muster erfolgreich mit Prozessen zu verkniipfen, bedarf es i)
aussagekraftigen oOkologischen Hypothesen, ii) geeigneten Methoden um Muster in Daten préazise
beschrieben zu kénnen und iii) zusétzlich geeignete Nullmodelle und Simulationsexperimente, um Muster

so eindeutig wie moglich mit Prozessen zu verkniipfen.
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