
J Veg Sci. 2024;35:e13243.	 ﻿	   | 1 of 11
https://doi.org/10.1111/jvs.13243

Journal of Vegetation Science

wileyonlinelibrary.com/journal/jvs

1  |  INTRODUC TION

Worldwide, individuals in tree and shrub populations tend to be spa-
tially clustered. This is true in tropical forests (Condit et al., 2000; 

Jara-Guerrero et al., 2015), temperate forests (Getzin et al., 2006; 
Rubio-Camacho et  al.,  2023), boreal forests (Gray & He,  2009; 
Das Gupta & Pinno, 2018), secondary forests (Jia et al., 2016), sa-
vanna shrublands (Hesselbarth et  al.,  2018) or natural grasslands 
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Abstract
Question: Species-specific habitat associations are one of several processes that lead 
to a clustered spatial pattern of plant populations. This pattern occurs in tropical and 
temperate forests. To analyze species–habitat associations, four methods are com-
monly used when determining species–habitat associations from spatial point pattern 
and environmental raster data. Two of the methods randomize the spatial point pat-
tern of plants, and two randomize the raster data of habitat patches. However, the 
strengths and weaknesses of the four methods have never been analyzed in detail.
Methods: We conducted a simulation study to analyze the strengths and weaknesses 
of the four most used methods. The methods are the gamma test, pattern reconstruc-
tion, the torus-translation test and the randomized-habitats procedure. We simulated 
neutral landscapes representing habitat patches and point patterns representing fine-
scale plant distributions. We built into our simulations known positive and negative 
species–habitat associations.
Results: All four methods were equally good at detecting species–habitat associations. 
Detected positive associations better than negative ones. Furthermore, correct de-
tections were mostly influenced by the initial spatial distribution of the point patterns, 
landscape fragmentation and the number of simulated null model randomizations.
Conclusions: The four methods have advantages and disadvantages, and which 
is the most suitable method largely depends on the characteristics of the available 
data. However, our simulation study shows that the results are consistent between 
methods.
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gamma test, neutral landscapes, pattern reconstruction, randomized-habitats procedure, 
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(Alvarez et al., 2011; Browning et al., 2014). This clustering is caused 
by biotic processes, abiotic processes, or a combination of both 
(Cottenie, 2005; Legendre et al., 2009). For example, spatially lim-
ited seed dispersal is a biotic process that leads to clustered patterns 
of trees (Condit et al., 2000). By contrast, the specialization of spe-
cies to specific environmental conditions (Tilman & Pacala, 1993) is 
an abiotic process that leads to clustered patterns of trees in suitable 
habitats through species–habitat associations (Harms et  al.,  2001; 
Comita et al., 2007). The study of small-scale species–habitat asso-
ciations, using methods such as spatial point pattern analysis, pro-
vides insights into the importance of environmental heterogeneity 
in shaping the spatial pattern of tree and shrub populations (Garzon-
Lopez et  al.,  2014). Point pattern analysis is a powerful tool for 
studying small-scale species–habitat associations because the pat-
tern contains information about the processes that shaped it (Law 
et al., 2009; Brown et al., 2016). It is possible to infer the processes 
by modeling the discrete locations of all individuals within a study 
area (Wiegand & Moloney, 2004; Law et al., 2009).

Most studies analyzing small-scale species–habitat associa-
tions use either the gamma test (Plotkin et al., 2000) or the torus-
translation test (Harms et al., 2001). Both methods have in common 
that they require data on the location of all individuals in the study 
area (the point pattern) and additionally on small-scale environmen-
tal conditions, such as topography or soil conditions, classified into 
discrete habitat patches as raster cells. The classification of habitats 
into discrete habitat patches is a great simplification because envi-
ronmental conditions are usually continuous (Cushman et al., 2010). 
Nevertheless, using discrete habitat patches has computational 
advantages and allows the easy communication of results. To test 
the null hypothesis that there are no species–habitat associations, 
or in other words, that the point pattern is independent of the spa-
tial arrangement of the habitat patches, possible spatial dependen-
cies between the species and habitats must be broken. Whereas 
the gamma test randomizes the point pattern, the torus-translation 
test randomizes the habitat patches to simulate null model random-
izations. In addition, there are two closely related approaches for 
detecting species–habitat associations. These are pattern recon-
struction (randomizes the point pattern; Tscheschel & Stoyan, 2006; 
Wiegand & Moloney, 2014) and the randomized-habitats procedure 
(randomizes the habitat patches; Harms et al., 2001). Both methods 
differ in the details of the randomization algorithms compared with 
the gamma test and torus-translation test. It is ultimately possible to 
understand all four methods as being complementary to each other 
(Harms et al., 2001).

Although the torus-translation test (Guo et  al.,  2016; Du 
et al., 2017; Furniss et al., 2017) is more commonly used than the 
gamma test (Garzon-Lopez et al., 2014; Yang et al., 2016), this pref-
erence is not based on published knowledge on the strengths and 
weaknesses of the methods. We found only a single study analyz-
ing expected false-positive detections for the torus-translation test 
(Comita et al., 2007) and very few studies comparing several meth-
ods (but see Harms et al., 2001; Garzon-Lopez et al., 2014). In addi-
tion to species characteristics and local environmental conditions, 

differences between the methods may be another reason why re-
sults differ between studies for similar forest types. For example, 
for tropical forest, the percentage of species with habitat associ-
ations differs greatly; e.g., 30% (Plotkin et  al., 2000), 64% (Harms 
et al., 2001), 70% (Lan et al., 2012) or 80% (Yamada et al., 2006) of 
the analyzed species. Thus, to be able to infer general conclusions 
about forest dynamics from individual case studies, we need to un-
derstand how the applied method influences the study results. We 
therefore conducted a simulation study to analyze the power of the 
different methods to identify differences.

Using simulated data with known characteristics, we compared 
the ability of the gamma test, pattern reconstruction, the torus-
translation test and the randomized-habitats procedure to detect 
species–habitat associations. As well as comparing the ability of the 
four methods to detect species–habitat associations for different 
association strengths, we also explored three potential confounding 
factors. These factors were: (a) spatial characteristics of the point 
patterns, (b) the number of simulated null model randomizations, and 
lastly (c) landscape fragmentation.

2  |  METHODS

The two dominant methods for analyzing species–habitat associa-
tions, the gamma test (Plotkin et al., 2000) and the torus-translation 
test (Harms et al., 2001), use randomized null model data to break 
possible dependencies between the individuals and the habi-
tat patches to show species–habitat associations (Figure  1b, d). 
However, because individuals and habitat patches are unlikely to 
be independent themselves, the spatial structures of the point pat-
tern and the habitat patches must be preserved during randomiza-
tion (Plotkin et al., 2000; Wiegand & Moloney, 2014). For example, 
dependencies between individuals can be caused by limited seed 
dispersal and hence spatial clustering of plants (Lutz et  al.,  2014; 
Nguyen et al., 2016), or competition between plants leading to reg-
ular spatial patterns (Pielou,  1962; Kenkel, 1988). In addition, it is 
probable because of Tobler's first law of geography (Tobler, 1970) 
that spatial autocorrelation between the habitat patches is present, 
i.e., neighboring patches are more similar than distant ones. Thus, 
when analyzing species–habitat associations, preserving the existing 
spatial structure of both the point pattern and the habitat patches 
controls for the biotic and other abiotic processes that shape spatial 
structure (Plotkin et al., 2000; Harms et al., 2001).

Species–habitat associations are tested by comparing, for each 
habitat type, the number of individuals of the observed data with 
the number of individuals of randomized null model data (Plotkin 
et  al., 2000; Harms et  al., 2001). Most previous published studies 
test only whether species–habitat associations are present, but 
not the strength of the associations (but see Comita et al., 2007). 
Thus, we also focused only on detecting associations, but not their 
strength. Species–habitat associations are detected with an ap-
proximated significance of p ≈ 0.05 for a two-tailed test if the ob-
served stem density is above the 97.5th percentile or below the 2.5th 

 16541103, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jvs.13243 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3 of 11
Journal of Vegetation Science

HESSELBARTH and WIEGAND

percentile of n iterations of the simulated null model randomizations 
for positive or negative associations (Harms et al., 2001). Thus, the 
simulation of null model randomizations is methodologically loosely 
related to envelope tests that are commonly applied in spatial point 
pattern analysis for hypotheses testing (Baddeley et al., 2014).

2.1  |  The gamma test

The gamma test (Plotkin et  al.,  2000) randomizes the point pat-
tern (Figure  1b). First, a suitable point process model is fitted to 
the observed data. Point process models simulate stochastic point 
patterns using mathematical descriptions of the pattern properties 
(Diggle, 2014; Wiegand & Moloney, 2014). For example, the Thomas 
point process model (Thomas, 1949) is a model commonly fitted to 
clustered patterns. Second, point patterns are simulated using the 
fitted point process model. Lastly, the simulated point patterns are 
superimposed on the observed habitat patches and the number of 
individuals within each habitat type is compared between the ob-
served data and the null model randomizations (Plotkin et al., 2000). 
Thus, the gamma test is methodologically similar to a regular χ2 
test, except that the expected value is generated by a point process 
model (Plotkin et al., 2000; Agresti, 2007). The gamma test, how-
ever, should only be applied if the observed point pattern can be 

described by a suitable point process model (Wiegand et al., 2007, 
2009). For the simulation study, we used a homogenous Poisson 
process or a Thomas cluster process (using the minimum contrast 
method, Appendix S1) to simulate the null model randomizations de-
pending on the spatial characteristics of the initial pattern.

2.2  |  Pattern reconstruction

Pattern reconstruction (Tscheschel & Stoyan, 2006) randomizes the 
point pattern using an optimization algorithm comparable to simu-
lated annealing (Figure 1c; Kirkpatrick et al., 1983). This has the ad-
vantage that the method does not depend on specific point process 
models and can be closely fitted to any point pattern (Appendix S2). 
First, pattern reconstruction starts with a completely random pat-
tern with the same number of individuals as the observed point 
pattern. Second, the spatial characteristics of the observed pattern 
(denoted as φ) and reconstructed pattern (denoted as ψ) are de-
scribed by one or several summary functions, namely fi(r, φ) and fi(r, 
ψ). We used the most powerful combination of two summary func-
tions (Wiegand et  al.,  2013), namely the pair-correlation function 
g(r) (Stoyan & Stoyan, 1994) and the nearest-neighbor-distribution 
function G(r) (Illian et al., 2008; Diggle, 2014) without edge correc-
tion. Third, the difference between the patterns is described by the 

F I G U R E  1 (a) Observed point pattern and discrete habitat patches and illustration of all randomization methods. (b–e) Whereas the 
(b) gamma test and (c) pattern reconstruction randomize the point pattern, the (d) torus-translation test and (e) randomized-habitats 
procedure randomize the habitat patches.
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the reconstructed pattern ψ is relocated and the new location is kept 
only if Eφ

total(ψt) decreases. To avoid optimizing towards a local mini-
mum, the new location is kept with a small probability (the so-called 
annealing parameter) even if Eφ

total(ψt) increases. The procedure is 
reiterated until a stopping criterion is met, i.e., a pre-set thresh-
old of Eφ

total(ψt), a maximum number of iterations tmax (Tscheschel 
& Stoyan, 2006), or a number of iterations without a reduction of 
energy tnochange. Lastly, the reconstructed point pattern is super-
imposed on the observed habitat patches and for each habitat the 
number of individuals is compared between the observed data and 
the null model randomizations. For the simulation study, we used an 
annealing parameter of a = 0.01. The stopping criteria were an en-
ergy Eφ

total(ψt) < 0.01, reaching tmax = 10,000 iterations, or no reduc-
tion in energy in tnochange = 5,000 iterations. Following Ripley's rule 
of thumb (Baddeley et al., 2015), we calculated g(r) up to a distance 
of r = 250 m to reconstruct the null model randomizations.

2.3  |  Torus-translation test

The torus-translation test (Harms et al., 2001) randomizes the habi-
tat patches (Figure 1d). This is done by shifting the patches about 
a two-dimensional torus in all four cardinal directions. Whenever 
patches reach the border of the study plot, they are shifted to the 
opposite side of the plot. It is also possible to simulate further null 
model randomizations by rotating and mirroring the shifted habitat 
patches. However, this test is only possible for rectangular study 
plots (Harms et al., 2001) and only if no strong gradients are pre-
sent in the environmental data. Finally, the observed point pattern 
is superimposed on the simulated habitat patches and the number 
of individuals for each habitat type is compared between the ob-
served data and the null model randomizations (Harms et al., 2001). 
For the simulation study, we shifted the habitats in all cardinal direc-
tions using 20-m steps (the resolution of the raster data). To create 
the null model randomization, this was repeated until the original 
simulation landscape was obtained again (or in other words, until the 
habitat classes had passed once around the torus).

2.4  |  Randomized-habitats procedure

Harms et  al.  (2001) also proposed a “randomized-habitats proce-
dure” that randomizes the habitat patches and works for irregularly 
shaped study plots (non-rectangular; Figure 1e). At the beginning, 
all cells of the null model data are “empty” and a random cell is as-
signed to the rarest habitat type. Random, but neighboring cells are 
subsequently assigned to the same habitat. This is repeated until the 
same number of cells as in the observed data are assigned to the 
habitat. The assignment is repeated with the second, third, etc. to 
the rarest habitat. To prevent the occurrence of excessively large 
patches of cells for one habitat, we slightly modified the procedure. 
If cellspatch/cellsplot < p; p ∈ [0; 1] the procedure jumps to a random, 

non-neighboring starting cell. Thus, as patch size increases, so does 
the probability of jumping to a non-neighboring starting cell. The 
procedure stops when all cells are assigned to a habitat. Lastly, the 
observed point pattern is superimposed on the simulated habitat 
patches and for each habitat the number of individuals is compared 
between the observed data and the null model randomizations 
(Harms et al., 2001).

2.5  |  Simulation study

We conducted a simulation study to analyze the four methods 
(Figure 2). The simulation study included three major steps: (a) sim-
ulating “observed” data with predefined (and thus known) charac-
teristics, (b) analyzing the observed data using the four described 
methods, and (c) evaluating the results against the known character-
istics of simulated observed data. Our simulation study was designed 
based on parameters used in published research; e.g., the number 
of discrete habitats and the spatial resolution (Table  1; Velázquez 
et al., 2016).

We first created neutral landscapes using the NLMR R package 
(two-dimensional fractional Brownian motion; Sciaini et  al.,  2018). 
Neutral landscapes are computer-generated landscapes without bi-
otic or abiotic processes creating them, commonly used to test null 
hypotheses (With & King, 1997). The landscapes had an extent of 
50 × 50 cells with a spatial resolution of 20 m. To simulate and test 
the influence of landscape fragmentation on the result, we used two 
values for the fractal dimension. The fractal dimension describes the 
correlation between values of the process, and we simulated low 
fragmentation with f = 0.5 and high fragmentation with f = 1.65. We 
classified the continuous values of the fractional Brownian motion 
into five discrete habitat classes using natural breaks (Fisher, 1958; 
Jenks & Caspall, 1971). The algorithm thereby increased between-
group variability and reduced within-group variability. We used five 
discrete habitat classes because this was the most common number 
in other published research studies that apply at least one of the four 
methods we analyzed (Table 1). Whereas low fragmentation resulted 
in larger habitat patches (Figure 3a), high fragmentation resulted in 
rather scattered habitat patches (Figure 3b). Furthermore, the rel-
ative area of individual habitat classes differed between simulated 
landscapes. For low landscape fragmentation, the relative area of 
classes ranged from a minimum of 2.8% to a maximum of 47.5% and 
from a minimum of 3.8% to a maximum of 35.9% for high fragmen-
tation (Appendix S3).

Second, we created point patterns with known habitat asso-
ciations (Appendix  S4) and increasing association strength α. To 
simulate the observed patterns, we used a homogenous Poisson 
process (complete spatial randomness; CSR) and a Thomas process 
(clustered) with 100 individuals for each pattern (also referred to as 
initial pattern hereafter). For the Thomas process we used a mean 
displacement from the cluster center of σ = 40 m and a mean num-
ber of μ = 5 individuals for each cluster. These initial patterns were 
subsequently modified to realize different association strengths. We 
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randomly chose habitats to which the point patterns showed a pos-
itive or negative association. We increased the association strength 
from α = 0.1 to α = 1.0 in increments of 0.1. Where there were 
positive associations, we added additional individuals indivadd = in-
divpattern × α in the habitat. For CSR patterns, we also added individ-
uals using a homogenous Poisson process. However, for clustered 
patterns, we used an inhomogeneous Poisson process based on the 
intensity of the initial pattern. Thus, there was a higher probability 
of adding individuals to an already existing cluster than adding them 
elsewhere. For negative associations, we removed individuals from 

the habitat using a probability of remaining of ρthin = 1 − α. This re-
sulted in a large number of individuals for positive associations and 
in a small number of individuals for negative associations in the cor-
responding habitats.

Third, we considered a correct result to be the detection of the 
truthful habitat association (positive or negative) of a species to the 
respective habitat. Because a positive association with a habitat 
potentially leads to a negative association to another habitat (and 
a negative association potentially leads to a positive association; 
Yamada et al., 2006), we defined a detection as incorrect whenever: 

F I G U R E  2 Conceptual figure of the 
simulation study experiment. Colored 
boxes indicate different components 
(input, method, treatment) of the 
experiment. The numbering of each box 
refers to the three major steps of the 
simulation study.

References Method
No. of 
habitats

Spatial 
grain (m)

Spatial 
extent (ha)

Comita et al. (2007) TTT 5 20 × 20 50

Dalling et al. (2012) TTT 5 20 × 20 50

Du et al. (2017) TTT 4 20 × 20 25

Furniss et al. (2017) χ2, TTT 8 20 × 20 13.64

Garzon-Lopez 
et al. (2014)

GT 2, 4, 5 Various 50–1600

Gunatilleke et al. (2006) TTT 8 20 × 20 25

Guo et al. (2016) TTT 8 20 × 20 15

Harms et al. (2001) χ2, TTT, RH 5 20 × 20 50

Lai et al. (2009) TTT 4 20 × 20 24

Lan et al. (2012) TTT 6 20 × 20 20

Plotkin et al. (2000) GT 2 25 × 25 50

Yamada et al. (2006) TTT 8 20 × 20 52

Yang et al. (2016) GT 7 20 × 20 20

Ye et al. (2011) TTT 3 20 × 20 25

Abbreviations: GT, gamma-test; RH, Random habitats procedure; TTT, Torus translation test; χ2, 
Chi-squared test.

TA B L E  1 Summary of published study 
designs for analyzing species–habitat 
associations.
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(a) the opposite association was detected with the habitat concerned 
(e.g., negative association when the known association was positive), 
(b) no significant association was detected with habitat, and (c) the 
correct association was detected with another habitat. Because we 
followed published methodologies (Table 1) as closely as possible, 
we only analyzed whether species–habitat associations were de-
tected, but not the strength of the association itself.

To test whether the number of simulated null model random-
izations influences the results of the analyses, we used two values, 
namely 99 and 499, for the four methods and the two fragmenta-
tion levels. These are typical values, according to a review paper on 

spatial point pattern analysis in ecology (Velázquez et al., 2016). For 
the torus-translation test, the number of possible translations is de-
termined by the grain and the extent of the study plot. Thus, we 
sampled the corresponding number of null model randomizations 
from the total of 2,597 possible translations.

All combinations of initial point pattern type, landscape frag-
mentation, null model randomizations and association strength 
were simulated 50 times. However, these simulations did not in-
clude the simulation of the null model data. They only included the 
simulations we used to investigate the four methods of analyzing 
species–habitat associations. To account for the stochasticity in the 

F I G U R E  3 Example representation of 
a neutral landscape for (a) low and (b) high 
landscape fragmentation used during the 
simulation study.

F I G U R E  4 Correct detection of species–habitat associations for (a, b) positive associations and (c, d) negative associations. We simulated 
initial patterns using (a, c) a Poisson point process model (CSR) or (b, d) a Thomas point process model (clustered). The association strength 
α describes the fraction of individuals in relation to the overall number of individuals that were added for positive or removed for negative 
associations. The detection rate summarizes 50 repetitions for each association strength, fragmentation level (columns) and number of null 
model randomizations (rows) and randomization approach (colors).

 16541103, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jvs.13243 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7 of 11
Journal of Vegetation Science

HESSELBARTH and WIEGAND

simulation of the neutral landscapes and the point patterns, with a 
probability of p = 0.25 for each simulation also the observed data 
was simulated again. All results represent the rates of correct and 
incorrect detections for all repetitions (a correct detection of the 
corresponding species–habitat association in 35 of the 50 repeti-
tions would be a correct detection rate of r = 70%). We used t-tests 
to analysis the difference of detection rates between the different 
simulation experiment treatments. We performed the analyses 
and simulations using R (version 4.2, R Core Development Team, R 
Foundation for Statistical Computing, Vienna, AT) and the spatstat R 
package (Baddeley et al., 2015) for all spatial point pattern analyses. 
The methods for investigating species–habitat associations are im-
plemented in the open-source R package shar (Hesselbarth, 2021).

3  |  RESULTS

Overall, the gamma test, pattern reconstruction, the torus-
translation test and the randomized-habitats procedure were all able 
to detect species–habitat associations similarly well. This included 
positive and negative associations, as well as correct and incorrect 
detections and all simulation experiment treatments (initial point 
pattern, fragmentation, null model randomizations). For negative as-
sociations differences between the methods were slightly more pro-
nounced than for positive associations; however, the performance of 
the four methods was still very similar overall.

Positive species–habitat associations based on a Poisson 
point process model were detected the best by the four methods 
(Figure  4a). Where there were 10% additional individuals within a 
habitat (α = 0.1), the four methods detected positive associations 
correctly in ca. 50% of all repetitions. Starting from 30% additional 
individuals within a habitat, the four methods detected positive as-
sociations correctly in almost all repetitions. For positive species–
habitat associations based on a Thomas cluster process, the correct 
detection rate was slightly worse (Figure 4b). Correct detection of 
positive associations in 50% of all repetitions was present start-
ing from ca. 30% to 40% of additional individuals within a habitat 
(α = 0.3–0.4). Beyond 50% of additional individuals (α = 0.5), the 
four methods detected positive associations correctly in almost all 
repetitions.

Compared with positive habitat associations, negative associa-
tions were detected less reliably. For species–habitat associations 
based on a Poisson point process model, the four methods detected 
negative associations in at least 50% of all repetitions only if more 
than 50% of individuals were removed from the habitat (α > 0.5; 
Figure 4c). Although the detection rate increased with the strength 
of negative association, correct detections in almost all repetitions 
were achieved only if most individuals were removed from the hab-
itat (α > 0.75; Figure 1c). Last, negative associations based on an ini-
tial Thomas process model had overall the lowest correct detection 
rate (Figure 4d). A correct detection rate of 50% was only achieved 
for relatively high association strengths of ca. 0.7 < α < 0.8 (removing 
70–80% of all individuals from the corresponding habitat). Even if no 

individuals were present in the corresponding habitat (α = 1.0), the 
detection rate of negative associations did not reach 100% for any 
of the four methods.

For incorrect detections (opposite association, no significant 
association, or correct association to a wrong habitat) the overall 
trend was similar to correct detections (Appendix S5). First, patterns 
simulated using a Poisson point process model had lower incorrect 
detection rates than initial patterns based on a Thomas process. 
Second, positive habitat associations had a lower incorrect detection 
rate than negative associations. Thus, the lowest incorrect detection 
rates were present for positive associations and (initial) CSR pat-
terns, whereas the highest incorrect detection rates were present 
for negative associations and (initial) clustered patterns.

Correct detection rates were generally slightly higher on aver-
age in less-fragmented landscapes (correctaverage = 68.7%) than in 
highly fragmented ones (correctaverage = 66.2%). Mean correct de-
tection rates were higher on average with 99 simulated null model 
randomizations (correctaverage = 68.4%) than with 499 simulated 
null model randomizations (correctaverage = 66.5%). Incorrect detec-
tion rates were also lower in less-fragmented landscapes than in 
highly fragmented ones (low fragmentation incorrectaverage = 32.2%; 
high fragmentation incorrectaverage = 34.3%). They were also lower 
when we simulated few null model randomizations than when we 
simulated many (99 simulated null model randomizations incor-
rectaverage = 32.2%; 499 simulated null model randomizations in-
correctaverage = 34.3%). However, none of these differences were 
statistically significant using t-tests. Finally, we emphasize that we 
do not consider a correct detection rate of 50% as sufficient to con-
fidently detect species–habitat associations. We highlight this value 
only to assist comparisons among the four methods we analyzed in 
our study.

4  |  DISCUSSION

We conducted a comprehensive simulation study of methods com-
monly used to analyze species–habitat associations. This included the 
gamma test (Plotkin et al., 2000), pattern reconstruction (Tscheschel 
& Stoyan, 2006), the torus-translation test (Harms et al., 2001), and 
the randomized-habitats procedure (Harms et al., 2001). Although 
the methods are mainly applied to fully mapped forest dynamics 
plots (e.g., see the ForestGEO network; Davies et  al., 2021), they 
can be applied to all study plots of fully mapped plants or other im-
mobile species. Interestingly, the four methods performed equally 
well. Correct and incorrect detection rates were mostly influenced 
by the initial spatial distribution of the point patterns (the point pro-
cess model used to simulate the initial pattern), and to a lesser de-
gree by the fragmentation of the landscape, as well as by the number 
of simulated null model randomizations. These findings thus match 
the consistent species–habitat associations for the most dominant 
tree species obtained by a previous study applying the four methods 
to a dataset from a European temperate forest (Hesselbarth, 2020). 
Thus, differences between species–habitat associations in 

 16541103, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jvs.13243 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 11  |    
Journal of Vegetation Science

HESSELBARTH and WIEGAND

previously published results (Plotkin et al., 2000; Harms et al., 2001; 
Yamada et al., 2006; Lan et al., 2012; Garzon-Lopez et al., 2014; Guo 
et al., 2016; Yang et al., 2016; Du et al., 2017; Furniss et al., 2017) 
seem to be connected to species characteristics or local environ-
mental conditions rather than to which methods were used.

However, each of the four methods have advantages and disad-
vantages. Advantages of the gamma test are that it is conceptually 
straightforward and applicable to irregular study plots. Its disadvan-
tage, however, is that it requires a suitable point process model to 
simulate the point pattern, which is difficult for complex patterns 
(Wiegand et al., 2007, 2009). Pattern reconstruction is possible for 
irregular study plots and is able to simulate complex point patterns. 
Its disadvantage, however, is that it is costly to compute (Tscheschel 
& Stoyan, 2006). However, these computational demands are prob-
ably of minor importance given the small differences of g(r) between 
99 and 499 simulated null models (Appendix S6). Nevertheless, pat-
tern reconstruction is the best of the four methods for preserving 
the spatial structure of both the environmental data and the point 
pattern data. The torus-translation test preserves well the internal 
spatial structure of the original data (Wiegand & Moloney,  2014). 
However, it can only be applied to rectangular study plots. In addi-
tion, if strong gradients are present within the study area, these will 
not be preserved (Wiegand & Moloney, 2014). Yet, using landscapes 
with strong environmental gradients still resulted in comparable 
performances for all methods. Even though correct detection rates 
decreased slightly, especially for initially clustered patterns with 
negative habitat associations, the torus-translation test did not re-
sult in considerably lower correct detection rates (Appendix S7). By 
contrast, the randomized-habitat procedure is applicable to irregular 
study plots, but the spatial structure of the data is poorly preserved. 
In particular, habitat gradients are not taken into account and null 
model data might be rather artificial.

For data from a tropical forest dynamics plot (Barro Colorado 
Island, Panama), the randomized-habitats procedure showed 38% 
fewer significant habitat associations than the torus-translation test 
(Harms et  al.,  2001). This is not in agreement with our simulation 
study. We observed no differences between the four methods in 
terms of correct and incorrect detections of habitat associations. It is 
possible that this lack of difference arose because the spatial struc-
ture of the simulated neutral landscapes was sufficiently preserved 
by the procedure, whereas real-world landscape structure might be 
harder to preserve. In addition, our modification of the procedure 
allowing the procedure to jump to a non-neighboring cell might have 
increased its ability to preserve the landscape structure. The origi-
nal method often results in a few very large patches, which may not 
resemble the observed landscape. Our small rates of incorrect de-
tections, especially for positive associations, are in accordance with 
similar studies. Using random labeling, Comita et al. (2007) showed 
that for an approximated significance level of p ≈ 0.05 there were 
only very few false-positive detections (1–4% for most of their five 
habitats).

With increasing positive association strength (i.e., more individu-
als within the habitat), point patterns become increasingly clustered 

(Yamada et al., 2006; Shen et al., 2013). This effect was surprisingly 
weak even though the initial CSR patterns became more clustered 
with increasing positive association strength (Appendix S8). Thus, 
for the gamma test, even a Poisson process point model resulted in 
a high correct detection rate for positive associations. This indicates 
that if the spatial structure of the point pattern resembles CSR, even 
for strong associations, the results should be similar to the generally 
less conservative χ2 test (Plotkin et al., 2000; Harms et al., 2001). 
Furthermore, initially clustered patterns remained clustered after 
adding or thinning points. However, the clustering decreased with 
increasing positive association strength, whereas the clustering in-
creased with increasing negative association strength (Appendix S8). 
This was because not all of the initial cluster centers were necessar-
ily located in the associated habitat.

For highly clustered point patterns, all methods performed less 
well (Appendix  S9). However, the performance depended on the 
level of landscape fragmentation. In less-fragmented landscapes, 
positive and negative species–habitat associations were detected at 
least partly correct. However, in highly fragmented landscapes, none 
of the methods was able to detect species–habitat associations to a 
satisfying level. Overall, the randomized-habitat procedure had the 
lowest performance in detecting species–habitat associations for 
the case of highly clustered point patterns, whereas the other meth-
ods performed better and similarly to each other.

The performance of the four methods was worse for negative 
habitat associations than for positive associations. This was possi-
bly because of the simulation study design. With increasing habitat 
association strength, the probability of removing an individual from 
the habitat increased. In consequence, the overall number of individ-
uals decreased. Thus, for stronger negative habitat associations it is 
possible that the number of remaining individuals was too small for 
successful analysis (Wiegand & Moloney, 2014).

Correct detection rates were lower at the high fragmentation 
level than at the low level for all four methods. In addition, simulta-
neously, incorrect detection rates were higher. This is not surprising 
given that correct and incorrect detection rates are not exactly con-
trary, but highly related to each other. The smaller average habitat 
patch size in landscapes with high fragmentation makes preservation 
of the spatial structure during randomization increasingly unlikely. 
This is an important finding given the increasing fragmentation of 
natural landscapes (Haddad et al., 2015; Bryan-Brown et al., 2020). 
In our study, we simulated all neutral landscapes with the same al-
gorithm and parameters and landscapes were only visually validated 
to be realistic. Thus, future research should look further into the in-
fluence of landscape composition and configuration, as well as that 
of spatial extent and grain on the performance of methods used to 
detect species–habitat associations. For such research, landscape 
metrics could be a suitable tool to quantify the spatial characteristics 
of the landscapes themselves (Uuemaa et al., 2013).

Although our simulation study is an important analysis of the 
power of the methods, further research should explore additional po-
tential factors affecting results. Such factors include the spatial reso-
lution and extent of environmental data, the number or composition 
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of discrete habitat classes, the absolute number of mapped indi-
viduals, and the scale and strength of association (but see Garzon-
Lopez et al., 2014 for an analysis of sampling scale). In addition, new 
developments in spatial point pattern analysis, such as multivariate 
pattern reconstruction (Wudel et al., 2023), provide the possibility 
of analyzing species–habitat associations on a community level and 
not just on the level of single species. Further research is needed 
on comparisons of the four methods of investigating species–habitat 
associations based on the simplifying assumptions of discrete habitat 
patches to methods exploring continuous environmental data.

5  |  CONCLUSIONS

Our simulation study showed that the four methods suggested by 
the literature for analyzing species–habitat associations were able to 
detect positive and negative associations in a satisfactory and similar 
way. We revealed that positive associations were detected more reli-
ably than negative associations. Similar associations in patterns with 
initially randomly distributed individuals were detected more reliably 
than in initially clustered patterns. Thus, our recommendation is to 
choose the method that best suits the available data. If strong en-
vironmental gradients are present, we advise randomizing the point 
pattern rather than the habitat classes. In addition, when an appro-
priate point process model is available, we suggest using the gamma 
test because it is computationally less costly than the other meth-
ods. Otherwise, we suggest using pattern reconstruction. Where 
there are no strong environmental gradients, randomizing the habitat 
classes is also a viable option. For rectangular study plots, we suggest 
using the torus-translation test. For irregular study plots, however, 
we recommend using the randomized-habitats procedure. To facili-
tate their use, we implemented the four methods in the open-source 
and freely available R package shar (Hesselbarth, 2021).
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