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Abstract:

This book chapter emphasizes the significance of categorical raster data in ecological studies, specifically land use or
land cover (LULC) data, and highlights the pivotal role of landscape metrics and pattern-based spatial analysis
in comprehending environmental patterns and their dynamics. It explores the usage of R packages, particularly
landscapemetrics and motif, for quantifying and analyzing landscape patterns using LULC data from three
distinct European regions. It showcases the computation, visualization, and comparison of landscape metrics,
while also addressing additional features such as patch value extraction, sub-region sampling, and moving window
computation. Furthermore, the chapter delves into the intricacies of pattern-based spatial analysis, explaining how
spatial signatures are computed and how the motif package facilitates comparisons and clustering of landscape
patterns. The chapter concludes by discussing the potential of customization and expansion of the presented tools.

Keywords: categorical raster data, land use, land cover, landscape metrics, pattern-based spatial analysis, spatial
ecology

Introduction
Categorical raster data, such as ones representing land use or land cover (LULC), is often used in ecological studies
(Fassnacht et al. 2006; Wulder et al. 2018; Chandra Pandey et al. 2021). This data is typically derived using remote
sensing data, for example, satellite images in combination with statistical learning (Talukdar et al. 2020; Wang et al.
2022; Wang and Mountrakis 2023). LULC describes the spatial distribution of different anthropogenic uses of land
or the natural land cover in a landscape. Thus, it provides information about human activities (usage) and natural
features (physical material at the surface) in a given area within a specific time frame (Fisher et al. 2005). This
information can then be used to better understand the processes and changes taking place in the landscape, such as
urbanization (Fu and Weng 2016), deforestation (Floreano and De Moraes 2021), or the spread of invasive species
(Manzoor et al. 2021).

From a computational perspective, LULC data can be conceptualized as a collection of cells organized in a regular
grid, with each cell assigned to a specific category (With 2019). This framework enables us to analyze the data
in terms of its two fundamental components: the composition, referring to the number of cells for each category,
and the configuration, pertaining to the spatial arrangement of cells within each category (Riitters 2019). These
components jointly create spatial patterns of categorical raster data, or landscape patterns, in short, which are
commonly used to characterize the structure of landscapes. Furthermore, additional characteristics of a categorical
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raster, for example, the diversity of categories, connectivity, or patch shape, can also be considered (Gustafson 1998;
Uuemaa et al. 2013).

The aim of this chapter is to provide an overview of the methods and tools that allow to quantify and analyze landscape
patterns. We will focus on the methods that are mainly implemented in two R packages: landscapemetrics
(Hesselbarth et al. 2019) and motif (Nowosad 2021). The landscapemetrics package allows to compute a collection
of landscape metrics, which quantify the composition and configuration of categorical raster data. The package also
provides a set of additional functions, making it possible to visualize the results of the calculations, extract values of
patches, sample metrics within sub-regions, or apply a moving window computation. Thus, its main purpose is to
provide a set of tools to describe landscape patterns. The motif package, on the other hand, is focused on the
analysis of these patterns. It allows to compare landscape patterns between different times, search for areas with
resembling landscape patterns, or cluster areas with similar landscape patterns.

In this chapter, we will consistently utilize a set of example data. These data consist of spatial raster representing
the LULC of three distinct regions in Europe: the Centre-Val de Loire region in France, the Noord-Brabant region
in the Netherlands, and the Norra Mellansverige region in Sweden. We obtained the data from the Copernicus
mission 2018 (European Environment Agency (EEA) (2023), available at <https://land.copernicus.eu/), and cropped
them to the respective regions. Additionally, all original 45 LULC classes were re-classified into five general classes
(i.e., “urban”, “agriculture”, “vegetation”, “marshes”, “water”) to simplify all examples. To reproduce the results
presented in this chapter, you can download the corresponding data and code from the GitHub repository at
https://github.com/Nowosad/landscapemetrics_motif_2024.

Landscape metrics
Landscape metrics allow to quantify the composition (i.e., amount) of and configuration (i.e., arrangement) of spatial
landscape characteristics within the context of categorical raster data (Gustafson 1998, 2019; Uuemaa et al. 2013).
The advantages of the landscape metrics approach include their easy application, interpretation, and communication,
especially in landscapes with clear distinctions between classes (Lausch et al. 2015). Thus, they are a common tool
in landscape and spatial ecology (Kupfer 2012; Lausch et al. 2015; Frazier and Kedron 2017). Even though the first
conceptual developments date back to the 1980s (Turner 1989; Gustafson 1998, 2019), the application of landscape
metrics gained popularity with the release of the FRAGSTATS software (McGarigal et al. 2012) in 1995, which
allows to calculate an extensive collection of metrics (Kupfer 2012; Gustafson 2019).

While FRAGSTATS pioneered the field and made landscape metrics available to many scientists using a graphical
user interface, more recently, the landscapemetrics R package (Hesselbarth et al. 2019) allows to calculate a
large collection of metrics using the R programming environment, which is popular among ecologists (Lai et al.
2019; Hesselbarth et al. 2021). The landscapemetrics package is based on the terra R package (Hijmans 2021),
but additionally supports raster objects from the stars (Pebesma 2019) and raster (Hijmans 2019) packages.
Furthermore, some functionality also supports vector data (e.g., sample points) using the sf package (Pebesma
2018).

Following McGarigal et al. (2012), landscape metrics can be classified depending on the characteristics they describe,
namely: area and edge, shape, core area, contrast, aggregation, and diversity metrics. Furthermore, landscape
metrics can be calculated on patch-, class- and landscape-scale. While patch level metrics describe each patch, i.e.,
contiguous cells belonging to the same class as identified by a connected components labeling algorithm, class level
metrics describe all patches belonging to the same class, and finally, landscape level metrics describe the entire
landscape Figure 1. In this chapter, we will demonstrate how to calculate all these types of landscape metrics.

In order to use all functionality of the landscapemetrics package and to pre- and post-process data, we need to
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Figure 1: A) Patch level: patches of an exemplary class indicated by color, i.e., all connected cells belonging to the
same LULC class. B) Class level: exemplary class indicated by color, i.e., all patches belonging to the same LULC
class. C) Landscape level: exemplary landscape including all LULC classes

load several packages related to spatial analysis and data wrangling. This includes the terra and sf packages for
methods related to predominantly raster and vector data, respectively. Furthermore, the dplyr (Wickham et al.
2019) and tidyr (Wickham et al. 2023) packages provide a grammar for data manipulation and cleaning, while
ggplot2 (Wickham 2016) is a data visualization package. Additionally, we are creating a color scheme for all maps
we are going to create in later examples.
library(landscapemetrics)
library(terra)
library(sf)
library(dplyr)
library(tidyr)
library(ggplot2)
color_scale <- c(urban="#C86058", agriculture="#FCE569",

vegetation="#44A321", marshes="#A3A6FF",
water="#00CFFD", nodata="#666666")

Next, we import the three raster objects using the terra package representing the LULC data of the three exemplary
regions as SpatRaster objects.
france <- rast("data/raster_france.tif")
netherlands <- rast("data/raster_netherlands.tif")
sweden <- rast("data/raster_sweden.tif")

Before calculating metrics, we need to check if the input raster fulfills certain requirements of the landscapemetrics
package. For this, we are using the check_landscape() function. The function checks if the coordinate reference
system (CRS) is projected (i.e., using Cartesian coordinates on a planar surface), the units of the map, and the
number of classes. If some of the checks fail, we are still able to calculate all metrics, however, especially metrics
relying on distances might not be correct or hard to interpret, e.g., due to the decimal degrees units of most
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geographic CRS (on the contrary metric distance units of most projected CRS). In this case, the function will return
a corresponding warning.
check_landscape(france)

layer crs units class n_classes OK
1 1 projected m integer 5 v

The input raster, france, has a projected CRS with units in meters and 5 discrete classes in total. Because the
raster does not violate any of the checks, the function returns an OK check mark.

Deriving landscape metrics

All functions to calculate metrics start with the prefix lsm_, followed by an abbreviation for the level (either p =
patch, c = class, l = landscape), and finally, an abbreviation of the metric. We can get an overview of all 133
metrics that are currently provided by the landscapemetrics package using the list_lsm() function. Additionally,
we can use the function to display only a certain subset of metrics based on type or level.
list_lsm()

# A tibble: 133 x 5
metric name type level function_name
<chr> <chr> <chr> <chr> <chr>

1 area patch area area and edge metric patch lsm_p_area
2 cai core area index core area metric patch lsm_p_cai
3 circle related circumscribing circle shape metric patch lsm_p_circle
# i 130 more rows

list_lsm(type="area and edge metric", level="class")

# A tibble: 11 x 5
metric name type level function_name
<chr> <chr> <chr> <chr> <chr>

1 area_cv patch area area and edge metric class lsm_c_area_cv
2 area_mn patch area area and edge metric class lsm_c_area_mn
3 area_sd patch area area and edge metric class lsm_c_area_sd
# i 8 more rows

To calculate a singular metric on patch-, class- or landscape-level, we simply use the function name and provide the
input raster.
df_p_shape <- lsm_p_shape(france)
df_c_area <- lsm_c_area_mn(france)
df_l_lpi <- lsm_l_lpi(france)

Thus, to calculate the shape index of each patch, the mean patch area of each class i, or the largest patch index of
the landscape, we use the three functions shown above. The returned data frames always include the same columns
regardless of the specified metric.
df_l_lpi
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# A tibble: 1 x 6
layer level class id metric value
<int> <chr> <int> <int> <chr> <dbl>

1 1 landscape NA NA lpi 65.1

These are an identifier of the raster layer, the level of the calculated metric, the class identifier, the patch identifier,
the name of the metric, and finally, the metric value. If any of the columns are not applicable (e.g., the patch
identifier on the landscape level), the column will contain NA values. This allows us to combine different data frames
or apply the same post-processing workflow, even for different metrics and/or levels. For example, we can use the
rbind() function to combine all three results into a single data frame and use functions from the dplyr package to
calculate the minimum and maximum value for each metric.
result_combined <- rbind(df_p_shape, df_c_area, df_l_lpi)
result_range <- group_by(result_combined, metric) |>

summarise(min=min(value), max=max(value))
result_range

# A tibble: 3 x 3
metric min max
<chr> <dbl> <dbl>

1 area_mn 64.4 3049.
2 lpi 65.1 65.1
3 shape 1 84.5

If we want to derive more than a few metrics, we can also use the calculate_lsm() function, which allows to
calculate several metrics with only one function call. However, as pointed out by other authors (Gustafson 2019),
“metric fishing” is an issue, i.e., computing as many metrics as possible and searching for any signal. Thus, we
strongly advise not to calculate all metrics, but rather select metrics based on research questions and hypotheses.
The calculate_lsm() function has many options for how to specify metrics, e.g., a vector of function names or the
types and levels of metrics that can be specified.
df_area <- calculate_lsm(france, what=c("lsm_p_area",

"lsm_c_area_mn", "lsm_l_ta"))
df_aggr_lsm <- calculate_lsm(france, level="landscape",

type="aggregation metric")

For many metrics, we can specify further arguments, such as the direction of the connected labeling algorithm, which
cells are considered core or edge cells, or the potential number of maximum classes. To see what arguments are
available, we can have a look at the help page of a function, e.g., ?lsm_p_core, but all arguments of a specific metric
function can also be used with calculate_lsm(). For example, we can change the directions of the connected
labeling algorithm and calculate the number of patches on the class level. Comparing the results using a workflow
including the dplyr package, we can see that the number of patches is larger when using “rook’s” (4-neighborhood)
instead of “queen’s” rule (8-neighborhood; the default).
df_np_queen <- lsm_c_np(france, directions=8)
df_np_rook <- lsm_c_np(france, directions=4)
df_comparison <- full_join(x=df_np_queen, y=df_np_rook,

by=c("layer", "level", "class", "id", "metric"),
suffix=c(".queen", ".rook")) |>
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mutate(value.diff=abs(value.queen - value.rook))
df_comparison

# A tibble: 5 x 8
layer level class id metric value.queen value.rook value.diff
<int> <chr> <int> <int> <chr> <dbl> <dbl> <dbl>

1 1 class 1 NA np 3231 4589 1358
2 1 class 2 NA np 1541 3592 2051
3 1 class 3 NA np 5512 9242 3730
# i 2 more rows

We can also use the calculate_lsm() function (or any other lsm_ function) to calculate metrics of several raster
layers or objects simultaneously. For this, we need to use a SpatRaster with several layers or a list of SpatRaster’s
as input. We are using the later example to calculate the perimeter and area of each patch for two regions in Europe.
For this example, we only want to keep the vegetation class, i.e., class 3. Additionally, because some of the patches
within each landscape are disproportional large, we are going to use the 95% quantiles of each region and metric to
remove some larger values. Next, we are re-labeling the unique layer identification column using the country names.
Last, we are reshaping the data frame from a long to a wider format to produce a ggplot2 figure in the final step
Figure 2.
df_perim_core <- list(nl=netherlands, fr=france) |>

calculate_lsm(what=c("lsm_p_perim", "lsm_p_area")) |>
filter(class %in% 3) |>
mutate(layer=case_when(layer==1~"Netherlands",

layer==2~"France")) |>
pivot_wider(names_from=metric, values_from=value) |>
filter(area<=quantile(area, probs=0.95) &

perim<=quantile(perim, probs=0.95))
ggplot(data=df_perim_core, aes(x=area, y=perim, color=layer)) +

geom_point(alpha=0.1) +
geom_smooth(se=FALSE, method="lm", formula="y ~ x") +
scale_color_manual(name="Country",

values=c(Netherlands="#F79400",
France="#001E96")) +

labs(x="Patch area [m2]", y="Patch perimeter [m]") +
theme_classic() + theme(legend.position = c(0.9, 0.1))

This example also demonstrates how easily the landscapemetrics package can be incorporated into larger workflows.
As expected, there is a strong relationship between the patch area and perimeter. Logically, as the patch area also
increases the perimeter increases and this trend is comparable between the two regions.

Visualization of landscape metrics

We can also use built-in functions to visualize the landscapes or calculated metrics. All visualization functions
start with the show_ prefix and return a list storing ggplot2 objects. This is done to be type-stable (i.e., always
returning the same data type) regardless of the number of raster objects/layers or selected metrics. First, we can
visualize all patches, i.e., all connected cells as specified by the directions argument of the connected components
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Figure 2: Relationship between the patch area and patch perimeter in the Centre-Val de Loire region in France
(blue) and Noord-Brabant region in the Netherlands (orange)

labeling algorithm. We can show the patches of the entire landscape (using the argument class="global"), or only
patches of specific classes (e.g., using class=3). Here, we show all patches of the vegetation class in the French
region Figure 3.
show_patches(france, class=3)

Figure 3: Patches of the natural vegetation class in the Centre-Val de Loire region in France

Furthermore, showcasing a more advanced approach, we have the capability to fill each cell of a patch accordingly to
a specific landscape metric. For instance, in the following example, the fill color of each patch in the vegetation class
corresponds to its area. Since we utilize a list to store two landscapes, the resulting list contains two elements, each
representing a landscape and storing the associated ggplot2 objects. It becomes apparent that the landscape in
France is dominated by a single large patch situated at the center of the region Figure 4.
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list_gg_area <- list(fr=france, nl=netherlands) |>
show_lsm(class=3, what="lsm_p_area")

plot_grid(plotlist=list_gg_area, ncol=2, labels=c("NL", "FR"))

Figure 4: Visualization of the patch area for the natural vegetation LULC class in the Centre-Val de Loire region in
France (left) and the Noord-Brabant region in the Netherlands (right)

Correlation between several metrics can be an issue (Cushman et al. 2008; Schindler et al. 2008; Nowosad and
Stepinski 2018), especially in combination with the previously discussed practice of “metric fishing”. Thus, we can
use the show_correlation() function to check correlations between metrics that were previously calculated using
either calculate_lsm() or singular metric functions Figure 5.
class_metrics <- calculate_lsm(netherlands, level="class",

type="aggregation metric")
show_correlation(class_metrics)

Additional features

The landscapemetrics also provides some more advanced functionality. This includes extracting values of patches,
sampling of metrics within sub-regions, or applying a moving window approach. In terms of metrics selection or
arguments passed on to the metric functions, all these functions behave similarly to the calculate_lsm() function.

In order to demonstrate the extraction and sampling of metrics, we first need to create sample points. For this, we
are going to randomly create 10 points within a region Figure 6.
samplepoints <- spatSample(france, size=10, as.points=TRUE) |>

st_as_sf()

Now, we can extract patch level metrics of all patches that contain a sample point. For this, we use the extract_lsm()
function. The resulting data frame has 20 rows, one for each metric and sample point. It is worth noting that
compared to previous result data frames, there is an additional column named extract_id, which facilitates matching
the metric results with the respective sample points.
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Figure 5: Correlation matrix of all class level metrics for the Noord-Brabant region in the Netherlands

Figure 6: Location of exemplary sample points used to extract and sample landscape metrics in the Centre-Val de
Loire region in France
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df_extract <- extract_lsm(france, samplepoints,
what=c("lsm_p_area", "lsm_p_perim"))

df_extract

# A tibble: 20 x 7
layer level class id metric value extract_id
<int> <chr> <int> <int> <chr> <dbl> <int>

1 1 patch 3 5207 area 15202 1
2 1 patch 3 5207 perim 297200 1
3 1 patch 3 7899 area 7652 2
# i 17 more rows

Similarly, we can also sample metrics within a buffer around each sample point. For this, we need to additionally
provide a size of the sampling buffer and its shape (either a square or circle), but it is also possible to directly use
polygon objects as a sampling buffer.
df_sample <- sample_lsm(france, samplepoints,

what=c("lsm_c_pland", "lsm_l_ta"),
size=10000, shape="circle")

filter(df_sample, percentage_inside>=75)

# A tibble: 47 x 8
layer level class id metric value plot_id percentage_inside
<int> <chr> <int> <int> <chr> <dbl> <int> <dbl>

1 1 class 1 NA pland 3.54 1 101.
2 1 class 2 NA pland 48.6 1 101.
3 1 class 3 NA pland 46.8 1 101.
# i 44 more rows

The resulting data frame has two additional columns. First, similar to the metrics extraction, an additional column
identifies the sampling buffer. Second, an additional column stores information about the actual clipped sampling
buffer area. Theoretically, this value should be equal to 100%. However, it includes all of the raster cells whose
centroids are inside the selector polygon (Lovelace et al. 2019), and thus the actual sampling buffer area might be
slightly larger or smaller than the specified area resulting in a deviation from the theoretical value. Furthermore,
sample points at the edge of the landscape might include a smaller area than specified by the size argument. In
these cases, a warning is returned and these sample plots can potentially be excluded from further analyses.

Similar to the previously used show_lsm() function, patch level metrics can be returned as a raster object in which
each cell stores the metric value of the patch it belongs to. Thus, each cell in the raster object stores its corresponding
metrics value. For this, the function spatialize_lsm() can be used. However, in order to be type-stable, this
functions always returns a nested list for each layer and metric (even if only one layer and/or metric is present). The
first level of the list corresponds to the number of layers, while the second level of the list corresponds to the number
of selected metrics. So we need to use some indexing in order to get only one raster, e.g., the fractal dimension index
raster, which we now can use for further analysis, such as calculating kernel density estimates (results not shown).
list_shape <- spatialize_lsm(netherlands,

what=c("lsm_p_shape", "lsm_p_frac"))
class(list_shape)
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str(list_shape)
values(list_shape$layer_1$lsm_p_frac, mat=FALSE) |> density()

Last, landscapemetrics provides a moving window approach, i.e., metrics can be calculated for the local neigh-
borhood of each focal cell. For this, the window_lsm() function can be used. Similar to the focal() function of
the terra package, a local neighborhood must be specific using a matrix object. As with the previously discussed
functions, metrics can be selected using the type of metric, or specific metrics using the what argument. However,
currently only landscape level metrics are implemented. Depending on the size of the landscape and the local
neighborhood matrix, this can be computationally demanding with a long run time.
mat_window <- matrix(1, nrow=501, ncol=501)
window_lsm(netherlands, window=mat_window, what="lsm_l_pr")

Utility functions

Many of the functions internally used by the landscapemetrics package might also be useful for users during
pre- or post-processing of raster data or to develop new methods to quantify landscape characteristics. All of these
functions start with the get_ suffix and usually return a (nested) list to be type-stable for different inputs.

One of the most fundamental functions of the package is the get_patches() function, which returns the patches of
each class using the connected components labeling algorithm. Yet, the result is a nested list in which the first level
refers to the number of raster layers/objects and the second level stores all patches separated by class i. All other
cells not belonging to the current class i are set to NA. In the following example, we are first getting all patches of
the region in French separated by class. Next, we are using all wetland and water-related classes and combining
them into one SpatRaster object as layers. Last, we use raster algebra to sum all cells which returns a singular
layer in which all cells are labelled by their cell identifier and all other cells are NA. This results in a single raster
layer combining all patches of one of the two water-related classes.
list_patches <- get_patches(france)
ras_water <- list_patches$layer_1[4:5] |>

rast() |>
sum(na.rm=TRUE)

ras_water

class : SpatRaster
dimensions : 2860, 2333, 1 (nrow, ncol, nlyr)
resolution : 100, 100 (x, y)
extent : 3568800, 3802100, 2619700, 2905700 (xmin, xmax, ymin, ymax)
coord. ref. : ETRS89-extended / LAEA Europe (EPSG:3035)
source(s) : memory
name : sum
min value : 10285
max value : 10844

The get_boundaries() function returns a raster in which all boundary/edge cells of a patch are labeled 1 and all
core cells are labeled 0. We define an edge cell as a cell that shares a neighboring cell with a different LULC value
than itself. Usually, we apply the function to previously connected components labeled landscapes and receive a list
with one element for each layer/object. This list can be used for further analysis, such as counting the number of
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edge and core cells.
ras_boundaries_urban <- get_boundaries(list_patches$layer_1$class_1)
lapply(ras_boundaries_urban, freq, wide=TRUE)

[[1]]
layer 0 1

1 1 304595 164282

We can use the two functions get_unique_values() and get_adjacencies() to receive a vector with all unique
class values and their adjacency matrix, respectively. Because both return a list in order to be type-stable, we can
directly index the first element if we only provide one raster layer/object. Of course, the dimensions of the adjacency
matrix must be identical to the length of the unique class values given.
vec_unique <- get_unique_values(sweden)[[1]]
mat_adjacencies <- get_adjacencies(sweden)[[1]]
dim(mat_adjacencies)

[1] 5 5

length(vec_unique)

[1] 5

Related, we can use the get_nearestneighbour() function on a previously connected component labeled landscape,
which returns a data frame with the minimum Euclidean distances to the nearest patch of the same class. In the
following example, we calculate the minimum distances between all patches of class 1, i.e., urban areas. There are
1,175 patches in total and the distance, as well as the identifier of the nearest neighbor, is included. We see that the
distance between patches 626 and 650 of the urban class is the largest in the LULC data of Sweden.
sweden_cl1 <- get_patches(sweden, class=1)
df_neighbour <- sweden_cl1$layer_1$class_1 |>

get_nearestneighbour(return_id=TRUE) |>
arrange(-dist)

Last, there are two utility functions related to the shape of the patches. First, the function get_circumscribingcircle()
returns a data frame with the diameter of the smallest circumscribing circle around each patch and the x- and
y-coordinate of it. Similar to this, the get_centroids() function returns a data frame with the coordinates of the
centroids of each patch. For this example, we will filter the data frame to include only the centroids of the marshes
class and create a map plotting the patches as well as all the centroids Figure 7.
df_circle <- get_circumscribingcircle(netherlands)
df_centroids <- get_centroids(netherlands) |>

dplyr::filter(class==4)
as.data.frame(netherlands, xy=TRUE) |>

ggplot(aes(x=x, y=y)) +
geom_raster(aes(fill=as.factor(cover))) +
geom_point(data=df_centroids, aes(x=x, y=y), shape=3, size=2.5) +
scale_fill_manual(values=color_scale) +
coord_equal() + theme_void() + theme(legend.position="none")
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Figure 7: Patch centroids of all marsh patches in the Noord-Brabant region in the Netherlands

Pattern-based spatial analysis
Pattern-based spatial analysis is a set of methods allowing for performing various tasks on landscape patterns, such as
comparing landscape patterns or searching for areas with similar landscape patterns to the query one (Wickham and
Norton 1994; Jasiewicz et al. 2015; Netzel et al. 2018; Nowosad 2021). Instead of treating each cell independently,
this approach focuses on considering local composition and configuration. Firstly, each area, a group of adjacent
cells encompassing a landscape pattern, is described numerically as spatial signatures. Next, the similarity between
spatial signatures for two areas can be measured using various dissimilarity measures. Low dissimilarity values
suggest that the two areas have similar composition and configuration. These ideas allow, for example, to compare
spatial pattern change between an area in time, search for similarities between areas of interest, or group areas with
similar patterns together. Spatial signatures may also be used directly as new variables, for example, in machine
learning models.

The pattern-based spatial analysis methods are available in the R package motif (Nowosad 2021), which allows to
describe spatial patterns of one or more categorical raster data for any defined regular and irregular regions. It
accepts spatial raster objects from the terra (Hijmans 2021) and stars (Pebesma 2019) R packages as inputs. All
motif functions use the lsp_ (local spatial pattern) prefix consistently, allowing users to find the desired tool quickly.
Most functions in the package are based on a computationally fast C++ code and the software is designed to work
on larger-than-RAM raster datasets.

We need to start by attaching the motif package for pattern-based spatial analysis, and two main packages for
handling spatial data, terra and sf (Pebesma 2018).
library(motif)
library(terra)
library(sf)

Our main dataset for the following examples will be the spatial raster representing land cover classes in the Centre-Val
de Loire region in France for the year 2018.
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france <- rast("data/raster_france.tif")
plot(france) # result not shown

Spatial signatures

The backbone of pattern-based spatial analysis is the concept of spatial signatures. A spatial signature is a short
numerical descriptor of landscape patterns featured in a particular area, and represented by a categorical raster.
Landscape patterns can be described in various ways, and thus many possible spatial signatures exist. That being
said, they usually express the composition and/or configuration (arrangement) of categorical raster cells (Table 1).
It is also worth noting that spatial signatures can be calculated for a large area or many smaller subareas divided by
regular or irregular zones (windows).

Spatial signatures are derived using the lsp_signature() function. We need to provide two arguments to calculate
a single spatial signature: our input categorical raster data (x) and the spatial signature type (type). The most
basic spatial signature is "composition": it is a share of cells of each category in a given area.
france_comp <- lsp_signature(france, type="composition")
france_comp

# A tibble: 1 x 3
id na_prop signature

* <int> <dbl> <list>
1 1 0 <dbl [1 x 5]>

The lsp_signature() function always returns a data frame with three columns: a unique identifier (id), the
proportion of cells in an area with missing values (na_prop), and the calculated signature (signature). This last
column is a list containing a single signature per area of interest. We can see the obtained spatial signature by
accessing the first element of the signature list.
france_comp$signature[[1]]

1 2 3 4 5
[1,] 0.07027133 0.7041287 0.2184272 0.0004055524 0.0067673

It shows that ~70% of the area is covered by agriculture (2), ~22% by vegetation (3), and ~7% by the urban class
(1).

While the "composition" signature is straightforward to understand, it does not encompass the spatial arrangement
of the categories: it does not tell if a given category represents one large continuous area or if it is distributed as
many small patches. Thus, more complex and informative signatures should be used in most cases. For instance,
when dealing with a single categorical raster, a co-occurrence vector (“cove”) serves as an appropriate choice for
such a signature.

The co-occurrence vector is a spatial signature that encapsulates both the composition and configuration of raster
classes in a given area (Haralick et al. 1973; Jasiewicz et al. 2015; Nowosad and Stepinski 2021). This is achieved by
counting not how many times each class occurs but how often a pixel with a given class is adjacent to another pixel
of some class. Thus, the result is a long vector (15 elements in this example) that counts how many times pairs
of pixels with given classes are adjacent, e.g., urban cells are adjacent to other urban cells, and how many times
urban cells are adjacent to, for example, vegetation cells. In general, you can think of spatial signatures as a way to
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compress information: our original raster has 6,672,380 values, which we now compressed into a vector of only 15
elements.
france_cove <- lsp_signature(france, type="cove")
france_cove

# A tibble: 1 x 3
id na_prop signature

* <int> <dbl> <list>
1 1 0 <dbl [1 x 15]>

As shown above, spatial signatures may be used as multi-value descriptors of landscape patterns of a given area.
This allows us to calculate spatial signatures of two or more areas and then compare them using a dissimilarity
measure.

By default, the window argument is set to NULL, and motif performs calculations for the entire area. However, the
package also offers the flexibility to compute numerous spatial signatures for a single large area by dividing it into
multiple subareas referred to as “local landscapes”. This partitioning is achieved by specifying either a numeric value
or an sf polygon data as the window argument.

When a numeric value is provided, the input raster is subdivided into square-shaped subareas, with each side length
equal to the specified numeric value, measured in cells. In the following example, we demonstrate the calculation of
co-occurrence vectors for square subareas measuring 50 by 50 cells, which is equivalent to 5 by 5 kilometers in this
example.
france_cove2 <- lsp_signature(france, type="cove", window=50)
france_cove2

# A tibble: 2,726 x 3
id na_prop signature

* <int> <dbl> <list>
1 1 0 <dbl [1 x 15]>
2 2 0 <dbl [1 x 15]>
3 3 0 <dbl [1 x 15]>
# i 2,723 more rows

Now, notice that the output here is still a data frame with three columns, but instead of having only one row, we
now have 2,726 rows – one row per subarea. We may visualize these subareas by creating a new sf object with
lsp_add_sf() and then using the plot() function (Figure 8).
france_cove2_sf <- lsp_add_sf(france_cove2)
plot(france, ext=ext(france_cove2_sf))
plot(st_geometry(france_cove2_sf), add=TRUE)

The window argument can also accept an sf polygon, allowing for the independent derivation of spatial signatures
within each polygon-defined area. In the provided example, we begin by randomly selecting 100 sample points
within the study area. For each point, we create a buffer of 300 meters, resulting in a corresponding buffer polygon.
By setting this buffer polygon as the window argument, we can obtain a spatial signature for the 300-meter buffer
surrounding each input point.
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Figure 8: Land cover of the study area overlayed with a grid with each subarea of 50 by 50 input raster cells
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Table 1: Spatial signatures available in the motif package

type name description
composition Composition A representation of the share of cells for each

category within a local landscape. The length
of the composition vector corresponds to the
number of unique categories in a raster.
Input: one categorical raster.

cove Co-occurrence
vector

A count of all of the pairs of the adjacent cells
for each category in a local landscape. By
default, its length equals to (n*n-n)/2+n,
where n is a number of unique categories.
Input: one categorical raster.

wecove Weighted
co-occurrence
vector

A modification of a co-occurrence vector, in
which each adjacency contributes to the
output based on the values from the weight
raster. By default, its length equals to
(n*n-n)/2+n, where n is a number of unique
categories. Input: one categorical and one
numerical raster.

incove Integrated
co-occurrence
vector

A count of all of the pairs of the adjacent cells
for each category in a local landscape for all
of the input rasters. Input: two or more
categorical rasters.

- A user-defined
function

Any user-defined function that can summarize
categorical spatial raster data.
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sample_points <- read_sf("data/france_sample_points.gpkg")
sample_polys <- st_buffer(sample_points, dist=300)
france_cove3 <- lsp_signature(france, type="cove", window=sample_polys)
france_cove3 # result not shown

Landscape patterns’ comparison

Landscape patterns change through time and we are able to evaluate and measure such a change. Here, we will use
a second dataset, land cover classes for the Centre-Val de Loire region in France for the year 2000.
france2000 <- rast("data/raster_france2000.tif")

Now that we have two datasets, for the years 2000 and 2018, we can proceed with their comparison. In pattern-based
spatial analysis, the comparison involves calculating the dissimilarity between the spatial signatures derived from
both rasters. This approach is complementary to the pixel-based comparison that is based on comparing all the
values for each dataset, as it allows us to evaluate the change in the landscape pattern.

To perform this comparison, we utilize the lsp_compare() function, and provide our two datasets, france2000 and
france, along with specifying the type of spatial signature (type) and the chosen dissimilarity measure (dist_fun).
Additionally, we have the option to obtain the results in one of several output classes. For instance, we can choose
to use the SpatRaster class from the terra package by setting output="terra".
lc_change1 <- lsp_compare(france2000, france,

type="cove", dist_fun="jensen-shannon",
output="terra")

lc_change1["dist"]

class : SpatRaster
dimensions : 1, 1, 1 (nrow, ncol, nlyr)
resolution : 233300, 286000 (x, y)
extent : 3568800, 3802100, 2619700, 2905700 (xmin, xmax, ymin, ymax)
coord. ref. : ETRS89-extended / LAEA Europe (EPSG:3035)
source(s) : memory
name : dist
min value : 0.0002682711
max value : 0.0002682711

The above example compared the change in landscape patterns using the co-occurrence vector signature ("cove")
and the Jensen-Shannon distance ("jensen-shannon") for the whole area. However, we can change the spatial scale
of our analysis and look at the spatial pattern changes also for smaller subareas. This can be done by adding a value
to the window parameter. In the example below, we set the window parameter to 50, meaning each subarea will
consist of 50 by 50 cells from the input rasters Figure 9.
lc_change <- lsp_compare(france2000, france,

type="cove", dist_fun="jensen-shannon",
output="terra", window=50)

The highest values in the right panel of Figure 9 represent areas with the most prominent change of land cover
landscape patterns. They mainly relate to the change of herbaceous areas into shrubs. We can also find examples of
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Figure 9: (Left) land cover data for year 2000; (center) land cover data for year 2018; (right) change in land cover
landscape patterns between 2000 and 2018 for 50 by 50 cells areas (Jensen-Shannon distance)

the areas with the largest changes by subsetting only the local landscapes with dissimilarity above some threshold.
Then, the lsp_extract() function can be used to extract a local landscape with a given id.
lc_change_df <- as.data.frame(lc_change)
subset(lc_change_df, dist>0.05)

id na_prop_x na_prop_y dist
1764 1764 0 0 0.05966520
2107 2107 0 0 0.07848007

compare_1 <- lsp_extract(c(france2000, france), window=50, id=2107)
plot(compare_1, legend = FALSE)

Figure 10 shows a local landscape with the largest change of land cover landscape patterns between 2000 and 2018.
This location is an example of an area with a large loss of natural vegetation (to agriculture) and a small expansion
of urban areas.

Landscape patterns’ search

Another example of pattern-based spatial analysis is searching for areas with similar landscape patterns to a query
one. Pattern-based search is a comparison of a spatial pattern of a given local landscape to many subareas of a
larger raster.

Here, we start by reading polygon data with our study area and cropping the france raster to its borders. Thus,
the france_study_area object is a raster storing LULC data for the study area.
study_area <- read_sf("data/france_study_area.gpkg")
france_study_area <- crop(france, study_area, mask=TRUE)

Search can be performed with the lsp_search() function, while providing two raster datasets (an area of interest
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Figure 10: An example of a local landscape of 5 by 5 kilometers with the largest change of land cover landscape
patterns between 2000 and 2018

and a larger area), the signature type, distance measure and the window size.
nlcd_search <- lsp_search(france_study_area, france,

type="cove", dist_fun="jensen-shannon",
output="terra", window=50)

# result not shown
plot(nlcd_search[["dist"]])

Its output is a terra object with three raster layers: a unique id, the proportion of cells in an area with missing
values (na_prop), and the calculated dissimilarity (dist) (Figure 11 D). The areas with the smallest dissimilarity
values are the ones that have the most similar spatial pattern to the area of interest.
nlcd_search_df <- as.data.frame(nlcd_search)
subset(nlcd_search_df, dist<0.001)

id na_prop dist
1303 1303 0 0.0003939899
1677 1677 0 0.0007520309
1867 1867 0 0.0007956902

To extract a selected local landscape, the lsp_extract() function can also be used here (Figure 11 C).
search_1 <- lsp_extract(france, window=50, id=1303)

Landscape patterns’ regionalization and clustering

Spatial structures derived with lsp_signature() may also be converted to spatial objects of sf, stars and terra
classes. The lsp_add_terra() function, for example, takes a spatial signature object and converts in into a terra
raster object.
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Figure 11: (A) Area of interest, (B) Search area divided into a set of regular local landscapes, (C) A local landscape
with the most similar land cover spatial pattern to the area of interest, (D) Dissimilarity between land cover landscape
patterns of the area of interest and the search area
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france_cove2 <- lsp_signature(france, type="cove", window=10)
france_cove_terra <- lsp_add_terra(france_cove2, metadata=FALSE)
france_cove_terra

class : SpatRaster
dimensions : 286, 234, 15 (nrow, ncol, nlyr)
resolution : 1000, 1000 (x, y)
extent : 3568800, 3802800, 2619700, 2905700 (xmin, xmax, ymin, ymax)
coord. ref. : ETRS89-extended / LAEA Europe (EPSG:3035)
source(s) : memory
names : X1, X2, X3, X4, X5, X6, ...
min values : 0, 0.0000000, 0, 0.0000000, 0.0000000, 0, ...
max values : 1, 0.3191489, 1, 0.3055556, 0.3944444, 1, ...

This new object has several raster layers representing spatial signature elements. This opens new possibilities for
using the information of landscape patterns in other workflows related to spatial regionalization, clustering, and
machine learning.

A regionalization example below uses the supercells package to group adjacent local areas with similar landscape
patterns. We can apply the supercells algorithm (Nowosad and Stepinski 2022), which expects four essential
arguments: input raster data, k: a number of regions desired by the user, compactness: a compactness value, where
larger values cause clusters to be more compact, and dist_fun: a distance function.
library(supercells)
france_sc <- supercells(france_cove_terra, k=200, compactness=0.6,

dist_fun="jensen-shannon", metadata=FALSE)

The output here is a spatial vector with a set of polygons, where each polygon represents a larger area with a certain
level of homogeneity of its landscape patterns (Figure 12 A).
plot(france)
plot(st_geometry(france_sc), add=TRUE, border="red") # result not shown

You may notice that, while the land cover landscape patterns are homogeneous internally, there are several examples
of similar adjacent polygons. In cases like this, we could merge such polygons, for example, using a clustering method,
such as hierarchical clustering or k-means. Firstly, we need to drop the geometry column from the france_sc object,
as it is not needed for the clustering, and then calculate the value distances between the landscape patterns of
each supercell. Next, we can apply the hierarchical clustering method with the hclust() function. Based on the
dendrogram visualization (plot(hc)), we can select the number of clusters: here we choose four clusters. Finally,
we can assign a cluster number to each supercell using the cutree() function.
france_sc_df <- st_drop_geometry(france_sc)
france_sc_dist <- philentropy::distance(france_sc_df,

method="jensen-shannon",
as.dist.obj=TRUE)

hc <- hclust(france_sc_dist)
france_sc$k <- cutree(hc, 4)

The hierarchical clustering method assigns a cluster number to each, previously derived supercell. Thus, to obtain a
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separate polygon for each cluster, we need to perform a postprocessing step: aggregate() the clusters to dissolve
the borders between clusters.
france_sc2 <- aggregate(france_sc, by=list(france_sc$k), FUN=mean)

The dissolved areas of clusters are shown on panel B of Figure 12, while the C panel shows the final created polygons.
The first cluster represents mostly agricultural areas, the third cluster represents mostly forested areas, and the
fourth cluster represents mostly urban areas. The second cluster is a bit more complex, as it contains a mosaic of
forested and agricultural areas. The result seems mostly satisfactory, where most created polygons are internally
homogeneous and visibly distinct from their neighbors. At the same time, there are a few areas in which homogeneity
needs to be improved. This suggests that the result could still be improved, for example, by using a larger number
of initial supercells or changing the number of expected clusters.

Figure 12: (A) Study area divided into supercells of homogeneous land cover landscape patterns, (B) Supercells
grouped into four clusters using the hierarchical clustering method, (C) Borders of the polygons derived with the
hierarchical clustering method

Conclusions
In conclusion, this chapter has highlighted the significance of categorical raster data, specifically land use or land
cover (LULC) data, in ecological studies. We have explored the role of landscape metrics and pattern-based spatial
analysis in quantifying and analyzing landscape patterns, using the R packages landscapemetrics and motif.

Landscape metrics, computed using the landscapemetrics package, have proven to be valuable tools in spatial
ecology and landscape ecology. They allow us to quantify the composition and configuration of spatial landscape
characteristics, enabling a deeper understanding of environmental processes and changes. By calculating metrics at
various levels and visualizing them, researchers can gain insights into the patterns and structures present in the
landscape. However, it is crucial to select metrics purposefully, aligned with research questions and hypotheses, to
avoid the pitfall of “metric fishing” (Gustafson 2019).

Moreover, pattern-based spatial analysis, facilitated by the motif package, offers a robust framework for analyzing
and comparing landscape patterns. By considering local groups of adjacent cells as landscape patterns and calculating
spatial signatures, we can capture both composition and configuration information. This approach allows us to
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compare landscape patterns over time, identify areas with similar patterns, and group similar areas together. The
motif package’s ability to handle large raster datasets is particularly advantageous.

The chapter has provided practical examples and code snippets demonstrating the calculation of landscape metrics
and spatial signatures, as well as their visualization. We have shown how to use these techniques to analyze
landscape patterns, explore changes over time, and extract local landscapes with significant pattern variations. By
combining the power of landscape metrics and pattern-based spatial analysis, researchers can gain a comprehensive
understanding of landscape dynamics, composition, and configuration. These techniques facilitate the investigation
of the pattern-process link that is a central framework of many ecological fields, but specifically landscape ecology
(Turner 1989). For example, the pattern-process link using LULC data was studied for species distributions (Marshall
et al. 2018), (functional) connectivity (Vogt et al. 2009), or genetic population structure (Borthwick et al. 2020).
However, patterns and processes are often in an interacting relationship influencing each other, and many drivers
and processes act simultaneously - such as climate, disturbances, succession, biotic competition and dispersal, or
human land use (Turner 2005). The pattern-process link is a complex and challenging topic, and the analysis of
landscape patterns is only one part of the puzzle. Nevertheless, landscape metrics and pattern-based spatial analysis
are powerful tools to investigate the pattern-process link and to gain a better understanding of the landscape.

Both packages, being open-source, offer extensive possibilities for customization and expansion. This enables
researchers to tailor them to their specific inquiries and requirements. The landscapemetrics package, for instance,
allows for the integration of new metrics through the utilization of diverse utility functions, thereby enhancing its
capabilities. Similarly, the motif package can be expanded by incorporating user-defined spatial signatures, which
can be used to measure similarities between different properties of landscape patterns. Consequently, contributions
to both packages are highly encouraged and welcomed. You can actively participate in the development of these
packages at https://github.com/r-spatialecology/landscapemetrics and https://github.com/Nowosad/motif.
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