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An understanding of how biodiversity is distributed across space is key to much of 
ecology and conservation. Many predictive modelling approaches have been developed 
to estimate the distribution of biodiversity over various spatial scales. Community 
modelling techniques may offer many benefits over single species modelling. However, 
techniques capable of estimating precise species makeups of communities are highly 
data intensive and thus often limited in their applicability. Here we present an R pack-
age, spectre, which can predict regional community composition at a fine spatial 
resolution using only sparsely sampled biological data. The package can predict the 
presences and absences of all species in an area, both known and unknown, at the 
sample site scale. Underlying the spectre package is a min-conflicts optimisation 
algorithm that predicts species’ presences and absences throughout an area using esti-
mates of α-, β- and γ-diversity. We demonstrate the utility of the spectre package 
using a spatially-explicit simulated ecosystem to assess the accuracy of the package’s 
results. spectre offers a simple to use tool with which to accurately predict com-
munity compositions across varying scales, facilitating further research and knowledge 
acquisition into this fundamental aspect of ecology.

Keywords: alpha-diversity, beta-diversity, community distribution, gamma-diversity, 
open-source, presence–absence, sparse data, species richness

Introduction

Understanding how biodiversity is distributed throughout space is central to ecology 
and conservation biology. It allows us to discern the processes causing that distribu-
tion and how best to conserve this biodiversity in the face of ongoing global change 
(McMahon et al. 2011). While there is an increasing availability of remotely mapped 
environmental data, such as topography or climatic conditions, biodiversity patterns 
often are only sparsely sampled. In response, there has been a rapid uptake of predictive 
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modelling relating biological survey data to remotely mapped 
environmental attributes, aimed at predicting the distribu-
tion of biodiversity at different scales (Ferrier and Guisan 
2006, D’Amen et al. 2017). While single species distribution 
modelling is one of the most widely undertaken biodiversity 
modelling practices (Elith and Leathwick 2009), community 
modelling has also seen rapid growth and is advantageous 
in many situations. Community modelling combines data 
from multiple species and produces estimates of the spatial 
pattern of biodiversity at a community level rather than at 
the single species level (Ferrier and Guisan 2006). Modelling 
at the community level may offer many benefits for situa-
tions involving high species diversity or undiscovered species 
(Ovaskainen et al. 2016). In addition, community modelling 
often makes use of all available data, including that of rare 
species necessarily excluded from single species distribution 
modelling (Guisan et al. 1999).

Early community models focused on providing simple 
measures of biodiversity, such as species richness and turn-
over (Nieto-Lugilde  et  al 2018). These simple biodiversity 
metrics can be quickly produced, requiring only a relatively 
small number of direct measurements from field sites and 
widely available remotely-sensed environmental data. These 
simple metrics do not, however, capture any information of 
the component species or makeup of the underlying commu-
nities. However, having spatially explicit estimates of com-
munity composition can be beneficial in answering many 
ecological questions, such as predicting the wider impacts of 
land-use change (Landis 2017). Therefore, several techniques 
capable of estimating the site-specific composition of com-
munities have been developed.

The majority of these community composition mod-
els adopt a predict first, assemble later approach (Ferrier 
and Guisan 2006), such as the stacked species distribution 
model (SSDM) approach. SSDM predicts the distribu-
tion of individual species using niche-based environmental 
parameters and then stacks them to predict a species assem-
blage (D’Amen et al. 2017). While various SSDM and other 
predict-first-assemble-later methods exist they all share a key 
drawback; a requirement for large amounts of data and sys-
tem understanding. This drawback is highly limiting in areas 
where only sparse sampling has occurred or that are extremely 
species rich, such as much of the tropics. A need exists, there-
fore, for an approach with the relatively small data require-
ments of the simpler biodiversity models, but still capable of 
estimating community species assemblages.

The use of simulated annealing optimisation-based 
algorithms has been shown capable of producing species-
level community compositions using only sparse field data 
(Mokany et al. 2011). These optimisation algorithms combine 
measures of community species richness and compositional 
dissimilarity between sites to generate a series of spatially and 
species-specific community distributions (Kirkpatrick  et  al. 
1983, Mokany et al. 2011). Correlative macroecological mod-
els and models of compositional dissimilarity are two popular 
approaches that relate community species richness and spe-
cies turnover between pairs of sites to environmental variables 

(D’Amen et al. 2017). Both species richness (i.e. α-diversity) 
and compositional dissimilarity (i.e. β-diversity) can be eas-
ily derived using only sparsely sampled data. Mokany et al. 
(2011) proposed a simulated annealing optimisation algo-
rithm, DynamicFOAM, that generates a target objective 
matrix against which to test potential community compo-
sitions, using estimates of α-diversity and β-diversity. This 
simulated annealing optimisation approach has been shown 
to generate useful estimates with a high degree of accuracy in 
a format that is easily shared with decision makers, using only 
sparse species data and easily accessible environmental data 
(Mokany et al. 2014). By incorporating estimates of regional 
gamma diversity this approach also allows for the prediction 
of the spatial distribution of unknown species, providing a 
mechanism with which to gain ecological understanding in 
areas where data may be limited (Mokany et al. 2011).

Several issues have, however, held back the widespread 
adoption of this community composition optimisation 
approach, despite its many advantages. Key amongst these 
issues is the lack of an easily accessible open-source tool 
with which to apply the algorithm. While some attempts 
have been made to implement such a tool, most notably 
the closed-source DynamicFOAM Spatial ver. 1.1 
(Mokany et al. 2011), these attempts have not been widely 
adopted by researchers as no such tool has been devel-
oped to easily fit the modern ecologists’ usual workflow 
which uses common scripting tools (such as R or Python). 
DynamicFOAM Spatial needs to be manually set up 
using a graphical user interface and requires users to calcu-
late the α- and β-diversity estimates outside of the software 
itself, in very particular formats, therefore not allowing the 
tool to be used within the usual workflows of ecologists using 
scripting tools. In addition, it is difficult to fit this type of 
manual graphical user interface tool into automated repeat-
able experimentation pipelines, especially if inputs need to 
be generated by entirely separate pieces of software, resulting 
in an unproductive bottleneck (Aho and Vos 2018). These 
problems greatly hinder the speed and applicability of this 
optimisation type analysis while also reducing repeatability, 
shareability and overall transparency of results and may have 
caused an underutilization of the DynamicFOAM approach 
(Asendorpf et al. 2013). If this community composition opti-
misation approach is to be accessed by a wider audience these 
limitations need to be addressed. In this paper we present our 
newly developed R package, spectre ver. 1.0.2 (SPatially-
Explicit Community disTRibution gEnerator), to overcome 
the above-mentioned issues.
spectre is an R package which implements a com-

munity composition optimisation algorithm, using a 
min-conflicts heuristic, in an easy-to-use way, generating 
fine-grain species-level community distributions. We have 
chosen to develop this package for R as this has been found 
to be the most popular coding language among ecologists 
(Sciaini et al. 2018, Lai et al. 2019). Additionally, R pro-
vides access to many well-established systems for biodi-
versity modelling (e.g. the gdm package (Fitzpatrick et al. 
2021)) and spatial analysis (e.g. the raster (Hijmans 
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2021) and sf packages (Pebesma 2018)). spectre is the 
first implementation of this type of community composi-
tion optimisation algorithm to be embedded in a repro-
ducible open-source framework. This framework allows 
researchers to estimate all the required inputs (α-, β- and 
γ-diversities) from a small set of sampled sites, run the opti-
misation algorithm and analyse the results for the entire 
landscape all within a single programming environment. 
This not only allows for an easier and simpler workflow, but 
also enhances the reproducibility and transparency of the 
workflow, thereby following calls for such open frameworks 
in the literature (Stodden  et  al. 2013, Etherington  et  al. 
2019). The outputs generated by spectre provide esti-
mates of the fine-grained distribution of all species (known 
and unknown) in an entire area, using only limited data col-
lected from a small number of sites allowing this informa-
tion to be estimated more quickly and cost effectively than 
other approaches such as SSDMs. Additionally, if labelled 
species data is provided, labelled species-specific presence 
and absence estimates can be generated for the entire area. 
By increasing the ease at which reliable estimates of commu-
nity compositions can be made, spectre may allow for 
an increase in the usage of such estimates in both applied 
and theoretical studies, especially in areas with more limited 
resources, supporting further development in the field of 
spatial community ecology.

Underlying algorithm

Overview

spectre allows users to generate species presence and 
absence estimates for every site in a landscape using met-
rics derived from data collected in only a small sample of 
sites. The algorithm used within spectre uses a min-
conflicts heuristic to optimise for β-diversity while keeping 
α-diversity and γ-diversity (i.e. the total number of species in 
the landscape) as constant constraints (Fig. 1) (Minton et al. 
1992, Stuart and Peter 2016). The min-conflicts heuristic 
implements a set of constraints in a local search domain with 
which to search for minimum conflicts compared to the 
objective of the optimisation. This min-conflicts approach 
has been shown to be far quicker and more efficient than 
the classic local search approach applied in DynamicFOAM 
(Sosic and Gu 1994). Estimates of α-diversity, β-diversity 
and γ-diversity must be calculated prior to use within spec-
tre. The β-diversity metric used in spectre is a pairwise 
Bray–Curtis dissimilarity matrix (equivalent to a Sorensen 
dissimilarity matrix if presence and absence data is used) for 
each site-by-site pair (Ricotta and Podani 2017). For a com-
plete discussion and working guide to predicting β-diversity 
between site pairs using a generalised dissimilarity modelling 
see Mokany et al. (2022). The objective commonness matrix 
describing the number of species in common between each 
pair of sites (Fig. 1B), which needs to be provided as an 
input parameter, is calculated using the α- and β-diversity 

estimates. The goal of spectre is to correctly assign spe-
cies presences and absences for each cell in a landscape so 
that a commonness matrix generated from the final solution 
matches the objective commonness matrix. The capability 
of spectre to use simple measures of species richness and 
community diversity to produce a species-level estimate of 
community composition is a major benefit of the underlying 
algorithm.

In the first step of the algorithm spectre creates a ran-
dom presence/absence by site matrix to act as the initial can-
didate solution (Fig. 1C). Each site in this matrix contains 
a total number of species records (either present or absent) 
matching the estimated γ-diversity with the number of pres-
ences in a site matching that site’s α-diversity estimate. For 
each iteration of the spectre algorithm, the number of 
shared species between each pair of sites is calculated to create 
a candidate solution commonness matrix (hereafter candidate 
commonness matrix; Fig. 1D) with the same structure as the 
objective commonness matrix. The candidate commonness 
matrix’s difference with the objective commonness matrix is 
the optimisation algorithm’s objective function. spectre 
uses the absolute distance to measure this difference between 
the two matrices.

At the beginning of each optimisation step, the algorithm 
removes a random species from a random site (Fig. 1). The 
algorithm then systematically and individually adds all the 
absent species at this site to determine the degree of change 
in the difference between the objective commonness matrix 
and the resulting candidate commonness matrix. Each added 
species is removed before a new species is added and tested. 
When all absent species have been added, tested and removed 
again, a species is randomly selected from the set of species 
that resulted in the smallest difference between the objective 
commonness matrix and the candidate commonness matrix 
and added to the site. The optimisation is repeated until the 
algorithm finds a perfect solution, or the maximum number 
of iterations is reached.

Input data

Three initial inputs are required by spectre. 1) A list of 
the estimated number of species present (α-diversity) in each 
site. Typically, estimates of α-diversity are created using cor-
relative modelling (e.g. generalised linear models) to link 
species numbers with environmental variables (Fig. 1). 2) A 
pairwise (site-by-site) matrix of the predicted compositional 
dissimilarity between all sites (β-diversity). The β-diversity 
matrix can be input as either a square matrix or an ordered 
list. β-diversity needs to be measured as Bray–Curtis dissimi-
larity (Eq. 1):

b a aij ij i jC= - +( )1 2 / 	  (1)

where βij is the dissimilarity between sites i and j, Cij is the 
number of species in common between the two sites and α 
is the number of species in each site (Fig. 1). We recommend 
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estimating pairwise dissimilarity using a generalised dissimilar-
ity model (Ferrier et al. 2007), such as is implemented by the 
'gdm' package in R (Fitzpatrick et al. 2021), though other 
approaches to calculate Bray–Curtis dissimilarity can also be 
used. These measures of α- and β-diversity are used to create a 
pairwise matrix containing the number of species in common 
between each pair of sites (Fig. 1), derived using (Eq. 2):

Cij ij i j
obj = -( ) +( )1 2b a a / 	  (2)

This acts as the objective commonness matrix (Cij
obj) against 

which all candidate commonness matrices are tested (Fig. 1). 
The last input required is (3) an estimate of the total num-
ber of species within the study area (i.e. γ-diversity), pro-
vided as a single numeric value which is used to bound the 
maximum number of species that may be present in any one 
site. The γ-diversity may be estimated using the measured 
number of species, prior knowledge or using sample extrap-
olation (Gotelli and Colwell 2001, Guillera-Arroita  et  al. 
2019). Example data showing formatting is stored in the 

Figure 1. Steps undertaken during a single progression of the spectre optimisation algorithm. (A) Flowchart overview of the steps and 
processes involved. In this panel, inputs are displayed as grey parallelograms, start and end points as ovals, processes as boxes and decision 
choices as diamonds. (B) The creation of an objective commonness matrix, describing species in common between each pair of sites and 
created based on the species richness (i.e. α-diversity) and compositional diversity (i.e. β-diversity) estimates used as inputs. This step is the 
entry point into the algorithm and is only undertaken once per function call, with the objective commonness matrix acting as a target 
against which all candidate solutions are tested. (C) An initial candidate presence/absence matrix is generated, with the number of presences 
in each site matching that site’s estimated species richness and the total number of species (rows) matching the overall estimated total num-
ber of species within the study area (i.e. the γ-diversity). This initial candidate presence/absence matrix can either be created entirely ran-
domly or using known species presences. (D) For every combination of altered species presence, a candidate commonness matrix matching 
the format of the objective commonness matrix is created. (E) The absolute error between each candidate commonness matrix and the 
objective commonness matrix is calculated and the candidate with the lowest error selected. If the error equals zero or the number of total 
iterations has reached the user selected maximum number of iterations the corresponding presence/absence matrix is selected as the final 
output, otherwise a new random site is selected and the algorithm continues at (D).
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‘minimal_example_data’ dataset provided within the 
package.

Initial candidate presence/absence matrix

Solutions in the optimisation algorithm are species presence/
absence matrices. The number of species presences in each 
site is equal to the estimated α-diversity for that site (cf. Input 
data above). Sites with known community compositions can 
be included as lists of species presences and absences, with the 
total number of species matching the estimated γ-diversity 
for the study area. The inclusion of known data can increase 
the speed at which an accurate solution is reached. The initial 
candidate presence/absence matrix for use in the algorithm 
can also be generated completely randomly, selecting several 
species matching estimated α-diversity to be in site i, with all 
other species absent in this site.
spectre can have two additional optional inputs: a 

partial solution, in the form of a presence/absence matrix, 
which is used to generate a candidate solution presence/
absence matrix (hereafter candidate presence/absence matrix) 
that replaces the randomly generated initial candidate pres-
ence/absence matrix. Additionally, a matrix indicating cells in 
the partial solution that can be considered fixed and thereby 
excluded from the optimisation algorithm. In this way, certain 
species can be excluded from certain sites or their occurrence 
in certain sites can be ensured if ecologically meaningful.

Solution optimisation

To improve the initial candidate solution and reach a more 
optimal estimate of community composition, a series of steps 
are cyclically repeated (Fig. 1D–E). One complete loop of 
these cyclical steps is referred to as one iteration. First, a ran-
dom site is selected and a random presence value in that site 
switched to absent. Then, every absence value in the selected 
site is individually switched to presence, and the number 
of species in common for each new community estimate 
compared with the objective number of species in common 
between site pairs (Cij

obj). This is done by calculating the 
number of species in common between site pairs in the can-
didate presence/absence matrix (Cij

sol) using Eq. 3:

C O Oij si sj
sol = ´å 	  (3)

where Osi and Osj are the observed presence (represented as 
one) or absence (represented as zero) of species s at site i and 
j respectively. Thereby generating the candidate commonness 
matrix, a site-by-site matrix of the number of species in com-
mon between site pairs in the candidate presence/absence 
matrix, with the same format as the objective commonness 
matrix. The distance between the objective commonness 
matrix and each new candidate commonness matrix (hereaf-
ter referred to as error) is then calculated as (Eq. 4):

error C Cij ij= -å obj sol 	  (4)

The goal of the optimisation is to minimise error, with an 
optimal solution having a value of zero. The error for each 
switched absence value (permutation) is recorded and the 
permutation with the smallest error is retained as the new can-
didate presence/absence matrix if it is smaller than or equal to 
the best solution so far. If multiple permutations result in the 
same minimum error, a random one of these permutations 
is selected. Then the iteration continues with a new random 
site and species. The optimisation algorithm runs until either 
the error is zero, thus an optimal solution presence/absence 
matrix was found, or until a pre-selected maximum number 
of iterations have been run. We recommend that the optimi-
sation algorithm is run with multiple initial candidate pres-
ence/absence matrices to ensure the optimisation algorithm 
can find the global minimum, rather than a local minimum 
resulting from a sub-optimal starting point.

Example application

To systematically demonstrate the effectiveness and accuracy 
of the spectre package we tested it using simulated com-
munity composition data sets, where known data was sam-
pled to mimic empirical data (Zurell et al. 2010). By using 
this virtual species approach, we were able to directly com-
pare estimates from spectre to the known complete vir-
tual community datasets, while simultaneously removing any 
empirically generated sources of uncertainty. The simulated 
community datasets were built using the virtualspe-
cies ver. 1.5.1 R package (Leroy et al. 2016), which gener-
ates spatially-explicit presence/absence matrices from habitat 
suitability maps. We simulated these suitability maps using 
Gaussian fields neutral landscapes produced using the NLMR 
ver. 1.0 R package (Sciaini et al. 2018). To allow for some 
level of overlap between species suitability maps, we divided 
the γ-diversity (i.e. the total number of simulated species) by 
an adjustable correlation value to create several species groups 
that share suitability maps. Using a full factorial design, we 
developed 81 presence/absence maps varying across four axes 
(Supporting information): 1) landscape size, representing the 
number of sites in the simulated landscape; 2) γ-diversity; 3) 
the level of correlation among species suitability maps, with 
greater correlations resulting in fewer shared species groups 
among suitability maps; and 4) the habitat suitability thresh-
old of the virtual species distribution function. The latter cor-
responds to the level to which a species is a generalist or a 
specialist represented by the degree a species distribution can 
be outside its preferred habitat type from a suitability map. 
Every variable set in the factorial design was replicated three 
times. Species richness, pairwise dissimilarity and γ-diversity 
measures (used as the inputs for the spectre algorithm) 
were taken directly from the simulated community compo-
sition maps, thus avoiding any errors produced in the pro-
cess of estimating these values. To assess the accuracy of the 
spectre generated estimates we calculated the relative 
commonness error (RCE) for each estimate, with the RCE 
calculated as (Eq. 5):
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RCE
obj sol

obj
=

−
×

C C

C
ij ij

ij

100 	 (5)

where Cij
obj is the objective commonness matrix and Cij

sol is 
the candidate commonness matrix.
spectre is built around one primary function, run_

optimisation_min_conf(). Wrapping all of spectre’s key 
functionality and steps into one function allows for simple 
parallelization of the algorithm using any of the various 
workflows used within the R ecosystem. Once all input data 
is prepared, the spectre optimisation algorithm is run 
using a single function call:

species_grid <- run_optimization_min_
conf(alpha_list = alpha_estimate,
          total_gamma = gamma_estimate,
          target = beta_estimate,
          max_iterations = 100000)

In this function, the first three arguments enter the three 
pieces of required input data, which for this demonstration 
were derived directly from the simulated data sets. max_
iterations set the maximum number of iterations that 
the optimisation algorithm may be run for before stopping, 
set to 100 000 iterations in our example to ensure there were 

adequate iterations to demonstrate a decrease and stabilisation 
of overall error. When applied to real use cases the number 
of iterations can be set to smaller values that still demonstrate 
the stabilisation of measured error. This stabilisation can be 
determined by running the function multiple times as is rec-
ommended to avoid optimizing to local minima.

After optimisation the function produces an R object con-
taining two pieces of stored data; 1) The predicted species 
presence and absence records for all sites across the study site, 
referred to above as solution presence/absence matrix. This 
prediction of presences and absences is the primary output of 
the spectre package. 2) A record of the decline in |error| 
produced in the optimisation algorithm, which is useful to 
visualise the effective improvement to the prediction and can 
be plotted using the included plot_error() function 
(Supporting information).

All the estimated community compositions derived 
from the spectre algorithm had RCE values less than 
20%, though a substantial impact on accuracy was caused 
by increases in landscape size (Fig. 2, Supporting informa-
tion). Final solution community compositions most closely 
matched the known simulated compositions for smaller 
landscapes with lower numbers of species (though gamma 
diversity had only a limited effect). Increasing the num-
ber of sites (landscape size) had the strongest impact on 
estimate accuracy while also having the largest impact on 

Figure 2. Relative commonness errors (RCE, %) for estimated community compositions predicted by the spectre package. Following 
the virtual species approach, inputs were derived from virtual community compositions with different total numbers of species (columns), 
landscape sizes (rows), species distribution width thresholds (x-axes) and the strength of correlation among species (y-axes). For each factor 
combination, the RCE was assessed between the commonness matrices of the community composition predicted by the spectre algo-
rithm and the virtual community composition. Each factor combination was replicated three times, printed labels represent mean RCE 
values across replicates.
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computational demand (100 sites and 100 species took 0.5 h 
to resolve while 900 sites and 200 species took 283 h, using 
a single core). These results suggest that while community 
estimates derived using spectre may be usefully accurate, 
this usefulness will degrade for larger landscapes. However, 
the sizes of landscapes normally studied in landscape ecol-
ogy (such as 1000 km2 with 50 m2 plots or approximately 
600 cells) estimates have high accuracy. Though it should 
be noted that given the drop off in accuracy with increas-
ing landscape sizes spectre may not be recommended 
for continental scale applications with thousands of cells. 
Additionally, accuracy can be increased by including known 
community composition data for individual sites if available 
(see incorporating empirical species composition data for 
specific sites section below).

This example was run using an AMD EPYC Processor 
with 2.9 GHz, 32 cores, and 128GB RAM, though as the 
optimisation process currently cannot be run in parallel, only 
one core was used per landscape. Future developments will 
focus on chunking larger landscapes into multiple smaller 
overlapping sections. Each of these sections could be solved 
in parallel before rejoining. By adopting this parallel chunk-
ing approach over multiple iterations compute times will 
be reduced as a function of the number of simultaneous 
instances run.

Incorporating empirical species 
composition data for specific sites

Including sites with known community compositions allows 
the spectre algorithm to estimate the distribution of the 
specific species within that community. To illustrate this 
capability, we used subsamples of the Barro Colorado Island 
(BCI), Panama open data set (Condit et al. 2019). We created 
presence and absence lists for 100 tree species from 100 ran-
domly selected sites (referred to as quadrats in Condit et al. 
2019), sampled without replacement out of the 1251 sites 
from the BCI data. One fraction of the sampled data was 
included in the initial candidate presence/absence matrix, 
and the remaining fraction was used to test how many species 
in the remaining sites were correctly predicted in the solu-
tion presence/absence matrix generated by spectre. We 
analysed the changes in accuracy in estimating specific species 
from including between 0 and 40 sites with known commu-
nity compositions, with a step size of five sites. We ran 25 
replicates for each number of known sites. The code used to 
run this type of analysis is:

species_grid <- run_optimization_min_
conf(alpha_list = alpha_estimate,
          total_gamma = gamma_estimate,
          target = beta_estimate,
          partial_solution = known_spe-

cies,
          fixed_species = known_species,
          max_iterations = 100000)

where known_species is a binary site-by-species matrix 
with known species represented as a one and unknown spe-
cies represented as a zero and the total number of species 
matching total_gamma. Note that known_species 
must be supplied as both the partial_solution and 
fixed_species parameters.

The proportion of correctly predicted species showed an 
initial large step followed by a near linear rate of increase as 
the number of sites with known community compositions 
increased (Supporting information). Including 25 sites with 
known community compositions roughly doubled the per-
centage of correctly predicted species from around 30% (no 
sites included) to greater than 60%.

Conclusion and outlook

The spectre package provides a tool to easily implement 
an optimisation-based community composition model. 
Optimisation-based community composition models have 
been shown capable of accurately predicting the species-level 
community makeup for large landscapes at fine resolutions 
(Mokany et al. 2011). These models have, however, not been 
widely adopted due to difficulties in their implementations. 
By simplifying the implementation and increasing the algo-
rithms efficiency spectre can facilitate a wider adoption 
of optimisation-based community composition models in 
ecological research.

The spectre package is a continuously developing, 
open-source tool that has several opportunities for future 
development that can further broaden its scope. Currently, 
spectre is accurate at scales of hundreds of sites, though 
for larger landscapes in the order of several thousand sites 
accuracy greatly reduces, while compute times significant 
increase. Future work could decrease this reduction in accu-
racy with landscape size, while simultaneously improving 
compute times, by allowing landscapes to be subdivided 
with partial overlaps. These subdivisions could then be 
run simultaneously with intermediate results being shared 
between overlapping subdivisions and weighted by the 
autocorrelation of input variables. In addition, we envisage 
adding other measures of dissimilarity, beyond only Bray–
Curtis dissimilarity, to be used as inputs into the algorithm. 
Beyond these planned developments as spectre is fully 
open-source, it may be used as a base from which other 
researchers may extend the package to use-cases not cur-
rently foreseen.

To our knowledge spectre is the first completely 
openly available software capable of implementing this type 
of algorithm for spatially-explicit and species-specific com-
munity composition estimation. While other algorithms 
such as SSDMs can provide similar community composi-
tion estimates they have far larger, often prohibitive, data 
requirements compared to spectre, making spec-
tre useful in situations where other algorithms cannot be 
applied. Our package is designed to follow a straightfor-
ward workflow and is extensively documented, including a 

 16000587, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06272 by U

niversity O
f M

ichigan L
ibrary, W

iley O
nline L

ibrary on [21/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 8 of 9

vignette demonstrating and explaining all the steps necessary 
to undertake a complete analysis. The package is hosted on 
CRAN and GitHub and is freely available.

To cite spectre or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘version 1.0’:
Simpkins, C. E. et al. 2022. spectre: an R package to estimate 

spatially-explicit community composition using sparse data. – 
Ecography 45: XX–XX (ver. 1.0).
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